首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Monolithic capillary columns based on polydivinylbenzene with monolith structure, optimized for the separation of high-molecular compounds, are synthesized. The structure of the monolith is optimized by varying the chemical composition of the porogene. It is shown that monolithic columns with the maximum amount of free volume can be obtained by using a porogene consisting of nonanol and toluene or mesitylene. On the basis of Van Deemter functions measured for the synthesized columns, it was concluded that for sorbates differing strongly in molecular weight and thus their diffusion coefficients, we cannot find a single optimum flow rate, and the optimum separation of polymeric sorbates requires that we reach a certain compromise. It was shown that in these circumstances, monolithic columns with the optimum structure of monolite allow almost completely separation of a mixture of 15 low molecular weight polymeric sorbates into individual components.  相似文献   

2.
The field of separation science has recently witnessed an explosion of interest and progress in the design and study of porous polymer monolithic materials. Monolithic columns with their unique structure possess some exceptional characteristics, which make them an excellent tool in the hands of analytical chemists, not only for separation but also for sample pretreatment. As a new member of the polymer monolith family, the micro/nanomaterial-functionalized polymer monolith has attracted considerable attention due to its many distinct characteristics, such as high permeability and selectively tailored surface chemistries. It exhibits great potential in separation science and analytical sample preparation. This review summarizes and highlights recent major advances of the micro/nanomaterial-functionalized polymer monolith, focusing on design considerations and the application of separation and enrichment. A brief overview of the properties of polymer monolithic columns is included, and then specific attention is paid to discuss the methods of fabrication and application of the micro/nanomaterial-functionalized polymer monolith in separation, sample pretreatment and enrichment, and highly sensitive detection. Finally, future possible research directions and challenges in the field are discussed.  相似文献   

3.
In this work a new type of chiral monolith silica column was developed for the chiral separation by micro high-performance liquid chromatography (micro-HPLC). The chiral monolith column with a continuous skeleton and a large through-pore structure was prepared inside a capillary of 100 microm I.D. by a sol-gel process, and chemically modified with chiral selectors, such as L-phenylalaninamide, L-alaninamide and L-prolinamide, on the surface of the monolithic silica column. Based on the principle of ligand exchange, these chiral monolithic columns were successfully used for the separation of dansyl amino acid enantiomers, as well as hydroxy acid enantiomers by micro-HPLC. The chromatographic conditions, the enantioselectivity and the performance of columns are discussed.  相似文献   

4.
This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol–gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 μA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases.  相似文献   

5.
The physicochemical and chromatographic parameters of ion-exchange monolithic matrices and capillary columns on their basis were measured. A method was suggested for producing high-efficiency ionexchange monolithic capillary columns with the monolith structure optimized for efficient selective separation of anions in ion chromatography. The influence of the conditions of synthesis of monoliths on their porosity, permeability, the structure of the monolith layer, and the impedance of monolithic columns on their basis was investigated. Original Russian Text ? A.A. Kurganov, A.A. Korolev, E.N. Viktorova, A.Yu. Kanat’eva, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 2, pp. 375–379.  相似文献   

6.
Monolithic columns are widely used in shotgun proteome analysis. However, it is difficult to increase the separation capability and proteome coverage by using conventionally organic polymer-based monolithic column due to the difficulty of controlling homogeneity of the overall pore structure (both pores and microglobules), which leads to relatively low column efficiency. Therefore, we studied the effect of constitute and percentage of porogenic solvent, functional monomer, column length, and separation gradient on the peak capacity and proteome coverage by methacrylate-based reversed phase monolithic columns. It was demonstrated that the porous property of the hydrophobic monolith, which was mainly determined by the porogenic solvent, was crucial to the proteome coverage when similar methacrylate monomer was utilized and a ternary porogenic solvent was adopted to prepare C12 monolithic column with relatively homogeneous overall pore structure. It was also shown that high proteome coverage could be reliably obtained with online multidimensional separation using totally monolithic columns system with the length of analytical column at 85 cm and reversed phase separation gradient at 210 min.  相似文献   

7.
有机-硅胶杂化整体柱结合了有机聚合物整体柱和硅胶整体柱的优势, 具有制备简单、机械强度高和通透性好等优点, 近年来备受关注. 有机-硅胶杂化整体柱的制备方法主要有常规溶胶-凝胶法、“一锅法”和其它聚合方法. 目前, 杂化整体柱已被广泛应用于微纳尺度分离分析、样品预处理和固定化酶反应器基质中. 本文综述了有机-硅胶杂化整体柱的制备方法及应用研究进展, 并展望了其今后的发展前景.  相似文献   

8.
The search for a method to fabricate monolithic inorganic columns has attracted significant recent attention due to their unique ability in separation applications of various biomolecules. Silica and polymer based monolithic columns have been prepared, but titania and other metal oxide monoliths have been elusive, primarily due to their fragility. This article describes a new approach for preparing nanostructured titania based columns, which offer better performance over conventional particle packed columns for separating a wide variety of biomolecules including phosphopeptides. TiO2 monolithic aerogels were synthesized in separation columns using in situ sol‐gel reactions in supercritical carbon dioxide (scCO2) followed by calcination, and compared to those prepared in heptanes. The characterization results show that scCO2 is a better solvent for the sol‐gel reactions, providing lower shrinkage with the anatase TiO2 monolith composed of nanofibers with very high surface areas. The monolithic columns show the ability to isolate phosphopeptides with little flow resistance compared to conventional titania particle based microcolumns.  相似文献   

9.
A new sol?Cgel protocol was designed and optimized to produce titanium-dioxide-based columns within confined geometries such as monolithic capillary columns and porous-layer open-tubular columns. A surface pre-treatment of the capillary enabled an efficient anchorage of the monolith to the silica capillary wall during the synthesis. The monolith was further synthesized from a solution containing titanium n-propoxide, hydrochloric acid, N-methylformamide, water, and poly(ethylene oxide) as pore template. The chromatographic application of capillary titania-based columns was demonstrated with the separation of a set of phosphorylated nucleotides as probe molecules using aqueous normal-phase liquid chromatography conditions. Capillary titania monoliths offered a compromise between the high permeability and the important loading capacity needed to potentially achieve miniaturized sample preparations. The specificity of the miniaturized titania monolithic support is illustrated with the specific enrichment of 5??-adenosine mono-phosphate. The monolithic column offered a ten times higher loading capacity of 5??-adenosine mono-phosphate compared with that of the capillary titania porous-layer open-tubular geometry.  相似文献   

10.
In recent years the use of monolithic polymers in separation science has greatly increased due to the advantages these materials present over particle-based stationary phases, such as their relative ease of preparation and good permeability. For these reasons, these materials present high potential as stationary phases for the separation and purification of large molecules such as proteins, peptides, nucleic acids and cells. An example of this is the wide range of commercial available polymer-based monolithic columns now present in the market.  相似文献   

11.
In quartz capillaries, macroporous monolithic sorbents based on divinylbenzene are synthesized and their porous structure is studied via inverse size-exclusion-hydrodynamic chromatography. Either a single-component porogen (a higher alcohol) or a two-component porogen (a mixture of a higher alcohol and mesitylene) is used for the synthesis of monoliths. The removal of a solvent good for a polymer from a porogen results in an increase in the size of flow-through channels and a decrease in the free-space volume inside the monolith; this space is used for the separation of polymer sorbates (the working volume of a column). At the same time, the volume of micro- and mesopores in the monolith structure is practically independent of the content of the good solvent in the porogen. It is inferred that the good porogen plays an active role in formation of the macroporous structure of monoliths. The structure of monoliths obtained on the basis of the two-component porogen with the use of nonanol and mesitylene or toluene is optimum for the molecular-mass analysis of polymers.  相似文献   

12.
Derivatized β‐cyclodextrin (β‐CD) functionalized monolithic columns were prepared by a “one‐step” strategy using click chemistry. First, the intended derivatized β‐CD monomers were synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD and then sulfonation or methylation was carried out. Finally, monolithic columns were prepared through a one‐step in situ copolymerization of the derivatized β‐CD monomer and ethylene glycol dimethacrylate. The sulfated β‐CD‐based monolith was successfully applied to the hydrophilic interaction liquid chromatography separation of nucleosides and small peptides, while the methylated β‐CD‐functionalized monolith was useful for the separation of nonpolar compounds and drug enantiomers in capillary reversed‐phase liquid chromatography. The structures of the monomers were characterized by Fourier transform infrared spectroscopy and mass spectrometry. The physicochemical properties and column performance of monoliths were evaluated by scanning electron microscopy and micro high performance liquid chromatography. This strategy has considerable prospects for the preparation of other derivatized CD‐functionalized methacrylate monoliths.  相似文献   

13.
The focus of this review is on current status and on-going developments in ion chromatography (IC) using monolithic phases. The use and potential of both silica and polymeric monoliths in IC is discussed, with silica monoliths achieving efficiencies upwards of 10(5) plates/m for inorganic ions in a few minutes or less. Ion exchange capacity can be introduced onto the monolithic columns through the addition of ion interaction reagents to the eluent, coating of the monolith with ionic surfactants or polyelectrolyte latexes, and covalent bonding. The majority of the studies to date have used surfactant-coated columns, but the stability of surfactant coatings limits this approach. Applications of monolithic IC columns to the separation of inorganic anions and cations are tabulated. Finally, a discussion on the recent commercialization of monolithic IC columns and the use of monolithic phases for IC peripherals such as preconcentrator columns, microextractors and suppressors is presented.  相似文献   

14.
Reproducible fabrication of the hierarchically porous monolithic silica in a large volume exceeding 1000 mL has been established. By the hydrothermal enlargement of the fully accessible small pores to exceed 50 nm in diameter, the capillary force emerged on solvent evaporation was dramatically reduced, which allowed the preparation of crack‐free monoliths with evaporative solvent removal under an ambient pressure. The local temperature inhomogeneity within a reaction vessel in a large volume was precisely controlled to cancel the heat evolved by the hydrolysis reaction of tetramethoxysilane and that consumed to melt ice cubes dispersed in the solution, resulting in large monolithic silica pieces with improved structural homogeneity. Homogeneity of the pore structure was confirmed, both on macro‐ and mesoscales, using SEM, mercury intrusion, and nitrogen adsorption/desorption measurements. Furthermore, the deviations in chromatographic performance were examined by evaluating multiple smaller monolithic columns prepared from the monolithic silica pieces cut from different parts of a large monolith. All the daughter columns thus prepared exhibited comparable performances to each other to prove the overall homogeneity of the mother monolith. Preliminary results on high‐speed separation of peptides and proteins by the octadecylsilylated silica monolith of the above production have also been demonstrated.  相似文献   

15.
An adamantyl (ADM)-functionalized monolithic stationary phase was newly synthesized by a single-step copolymerization of 1-adamantyl-(α-trifluoromethyl) acrylate, ethylene dimethacrylate, and 2-acrylamido-2-methyl-1-propanesulfonic acid in order to prevent the peak tailing of basic solutes in capillary electrochromatography and was compared with butyl methacrylate (BMA)-based one. The ADM structure shields the negatively charged groups on the surface of monolith from basic solutes, resulting in better peak shapes than BMA-based monolithic stationary phase. As the monomers ratio decreased, the monolithic column had lower retention and higher column efficiency which was likely due to lower phase ratio and smaller globule size of monolith, respectively. The ADM-functionalized monolithic columns exhibited a good repeatability and reproducibility of column preparation with relative standard deviation values below 9% in the studied chromatographic parameters.  相似文献   

16.
SVEC Frantisek 《色谱》2005,23(6):585-594
 Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography (HPLC) in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are prepared using simple processes carried out in an external mold (inorganic monoliths) or within the confines of the column (organic monoliths and all capillary columns). These methods afford macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, the monolithic columns perform well even at very high flow rates. The applications of monolithic capillary columns are demonstrated on numerous separations in the HPLC mode.  相似文献   

17.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

18.
Monolithic stationary phases and columns have rapidly become highly popular separation media for liquid chromatography, in spite of their recent discovery. However, their most important features have not yet been completely clarified. A complete understanding of their performance and of their intrinsic characteristics will require the systematic acquisition of many series of reliable experimental data and their consistent analysis from different points of view. Progress in their design and production requires now that the chromatographic behavior of monolithic columns be studied in close connection with their physico-chemical and structural properties. The main goal of this review is to summarize fundamental information on some physico-chemical and chromatographic characteristics of monolithic stationary phases and columns for RPLC. The material reviewed deals only with silica-based monolithic columns. First, structural information on the porosities and the size of the pores in monolithic columns is reported. Second, results of chromatographic studies that deal with the characterization of monolithic columns are summarized. Third, results of detailed studies made on the adsorption equilibrium and the surface heterogeneity of monolithic stationary phases are presented. Finally, results on the mass transfer kinetics in monolithic columns derived from the applications of the classical random-walk model and of the moment theory to a new model of the monolith are discussed.  相似文献   

19.
Monolithic columns for capillary electrochromatography (CEC) are receiving quite remarkable attention. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. This review summarizes the current state-of-the-art in this rapidly growing area of CEC with a focus on monolithic capillary columns prepared from synthetic polymers. Recent achievements in column technologies for both high-performance liquid chromatography and capillary electrophoresis are used as the starting point to highlight the influence of these well established analytical methods on the development of monolithic capillary columns for CEC. The effects of individual variables on the separation properties of monolithic capillaries are discussed in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds in different chromatographic modes.  相似文献   

20.
Modern rigid porous polymer monoliths were conceived as a new class of stationary phases in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are typically prepared using a simple molding process carried out within the confines of the capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, monolithic columns perform well even at very high flow rates. Various mechanisms including thermally and UV initiated free radical polymerization as well as ring opening metathesis copolymerizations were demonstrated for the preparation of monolithic capillary columns. The versatility of these preparation techniques was demonstrated by their use with hydrophobic (styrene, divinylbenzene, butyl methacrylate, ethylene dimethacrylate), hydrophilic (2-hydroxyethyl methacrylate, methacrylamide, methylenebisacrylamide), ionizable (vinylsulfonic acid, 2-acrylamido-2-methyl-propanesulfonic acid), and tailor-made (norborn-2-ene, 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endo-dimethanonaphthalene) monomers. Variation of polymerization conditions enables control of the porous properties of the monolith over a broad range and mediates the hydrodynamic properties of the monolithic columns. The applications of polymer-based monolithic capillary columns are demonstrated for numerous separations in the microHPLC mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号