首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new semiclassical initial value representation (SC-IVR) propagator and a SC-IVR propagator originally introduced by Kay [J. Chem. Phys. 100, 4432 (1994)], are investigated for use in the split-operator method for solving the time-dependent Schrodinger equation. It is shown that the SC-IVR propagators can be derived from a procedure involving modified Filinov filtering of the Van Vleck expression for the semiclassical propagator. The two SC-IVR propagators have been selected for investigation because they avoid the need to perform a coherent state basis set expansion that is necessary in other time-slicing propagation schemes. An efficient scheme for solving the propagators is introduced and can be considered to be a semiclassical form of the effective propagators of Makri [Chem. Phys. Lett. 159, 489 (1989)]. Results from applications to a one-dimensional, two-dimensional, and three-dimensional Hamiltonian for a double-well potential are presented.  相似文献   

2.
In this paper, we consider a dissipative system in which the system is coupled linearly to a harmonic bath. In the continuum limit, the bath is defined via a spectral density and the classical system dynamics is given in terms of a generalized Langevin equation. Using the path integral formulation and factorized initial conditions, it is well known that one can integrate out the harmonic bath, leaving only a path integral over the system degrees of freedom. However, the semiclassical initial value representation treatment of dissipative systems has usually been limited to a discretized treatment of the bath in terms of a finite number of bath oscillators. In this paper, the continuum limit of the semiclassical initial value representation is derived for dissipative systems. As in the path integral, the action is modified with an added nonlocal term, which expresses the influence of the bath on the dynamics. The first order correction term to the semiclassical initial value approximation is also derived in the continuum limit.  相似文献   

3.
The forward-backward (FB) approximation as applied to semiclassical initial value representations (SCIVR's) has enabled the practical application of the SCIVR methodology to systems with many degrees of freedom. However, to date a systematic representation of the exact quantum dynamics in terms of the FB-SCIVR has proven elusive. In this paper, we provide a new derivation of a forward-backward phase space SCIVR expression (FBPS-SCIVR) derived previously by Thompson and Makri [Phys. Rev. E 59, R4729 (1999)]. This enables us to represent quantum correlation functions exactly in terms of a series whose leading order term is the FBPS-SCIVR expression. Numerical examples for systems with over 50 degrees of freedom are presented for the spin boson problem. Comparison of the FBPS-SCIVR with the numerically exact results of Wang [J. Chem. Phys. 113, 9948 (2000)] obtained using a multiconfigurational time dependent method shows that the leading order FBPS-SCIVR term already provides an excellent approximation.  相似文献   

4.
There have been quite a few attempts in recent years to provide an initial value coherent state representation for the imaginary time propagator exp(-betaH). The most notable is the recent time evolving Gaussian approximation of Frantsuzov and Mandelshtam [J. Chem. Phys. 121, 9247 (2004)] which may be considered as an expansion of the imaginary time propagator in terms of coherent states whose momentum is zero. In this paper, a similar but different expression is developed in which exp(-betaH) is represented in a series whose terms are weighted phase space averages of coherent states. Such a representation allows for the formulation of a new and simplified forward-backward semiclassical initial value representation expression for thermal correlation functions.  相似文献   

5.
A new class of prefactor free semiclassical initial value representations (SCIVR) of the quantum propagator is presented. The derivation is based on the physically motivated demand, that on the average in phase space and in time, the propagator obey the exact quantum equation of motion. The resulting SCIVR series representation of the exact quantum propagator is also free of prefactors. When using a constant width parameter, the prefactor free SCIVR propagator is identical to the frozen Gaussian propagator of Heller [J. Chem. Phys. 75, 2923 (1981)]. A numerical study of the prefactor free SCIVR series is presented for scattering through a double slit potential, a system studied extensively previously by Gelabert et al. [J. Chem. Phys. 114, 2572 (2001)]. As a basis for comparison, the SCIVR series is also computed using the optimized Herman-Kluk SCIVR. We find that the sum of the zeroth order and the first order terms in the series suffice for an accurate determination of the diffraction pattern. The same exercise, but using the prefactor free propagator series needs also the second order term in the series, however the numerical effort is not greater than that needed for the Herman-Kluk propagator, since one does not need to compute the monodromy matrix elements at each point in time. The numerical advantage of the prefactor free propagator grows with increasing dimensionality of the problem.  相似文献   

6.
A semiclassical initial value representation formulation using the Van Vleck [Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928)] propagator has been used to calculate the flux correlation function and thereby reaction rate constants. This Van Vleck formulation of the flux-flux correlation function is computationally as simple as the classical Wigner [Trans. Faraday Soc. 34, 29 (1938)] model. However, unlike the latter, it has the ability to capture quantum interference/coherence effects. Classical trajectories are evolved starting from the dividing surface that separates reactants and products, and are evolved negatively in time. This formulation has been tested on model problems ranging from the Eckart barrier, double well to the collinear H+H2.  相似文献   

7.
The authors show that a recently proposed approach [J. Chem. Phys. 123, 084103 (2005)] for the inclusion of geometric constraints in semiclassical initial value representation calculations can be used to obtain excited states of weakly bound complexes. Sample calculations are performed for free and constrained rare gas clusters. The results show that the proposed approach allows the evaluation of excited states with reasonable accuracy when compared to exact basis set calculations.  相似文献   

8.
A graph theoretic approach to the representation of N particle systems involving arbitrary single-particle spin is presented. The method is a generalization of the Distinct Row Table (DRT ) technique employed by Shavitt in developing the graphical unitary group approach (GUGA ) to electronic spin-orbitals. A detailed analysis of the DRT and GUGA representations is presented based on several theoretical considerations and computer-tested implementations. The use of the representation to establish rules concerning the evaluation of the matrix elements of the group generators is also discussed.  相似文献   

9.
The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.  相似文献   

10.
A justification is given for the validity of a nonadiabatic surface hopping Herman-Kluk (HK) semiclassical initial value representation (SC-IVR) method. The method is based on a propagator that combines the single surface HK SC-IVR method [J. Chem. Phys. 84, 326 (1986)] and Herman's nonadiabatic semiclassical surface hopping theory [J. Chem. Phys. 103, 8081 (1995)], which was originally developed using the primitive semiclassical Van Vleck propagator. We show that the nonadiabatic HK SC-IVR propagator satisfies the time-dependent Schrodinger equation to the first order of variant Planck's over 2pi and the error is O(variant Planck's over 2pi(2)). As a required lemma, we show that the stationary phase approximation, under current assumptions, has an error term variant Planck's over 2pi(1) order higher than the leading term. Our derivation suggests some changes to the previous development, and it is shown that the numerical accuracy in applications to Tully's three model systems in low energies is improved.  相似文献   

11.
In this paper we compare semiclassical initial value representation, conventional transition state theory with Wigner and Eckart tunneling correction, quantum reduced dimensionality, and quasiclassical thermal rate coefficients for N+N(2) exchange reaction.  相似文献   

12.
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the second order WD based on "Wigner trajectories" [H. W. Lee and M. D. Scully, J. Chem. Phys. 77, 4604 (1982)] and the full Donoso-Martens dynamics (full DMD) and the second order DMD based on "Donoso-Martens trajectories" [A. Donoso and C. C. Martens, Phys. Rev. Lett. 8722, 223202 (2001)]--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of the four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (nonlinear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.  相似文献   

13.
An approach for the inclusion of geometric constraints in semiclassical initial value representation calculations is introduced. An important aspect of the approach is that Cartesian coordinates are used throughout. We devised an algorithm for the constrained sampling of initial conditions through the use of multivariate Gaussian distribution based on a projected Hessian. We also propose an approach for the constrained evaluation of the so-called Herman-Kluk prefactor in its exact log-derivative form. Sample calculations are performed for free and constrained rare-gas trimers. The results show that the proposed approach provides an accurate evaluation of the reduction in zero-point energy. Exact basis set calculations are used to assess the accuracy of the semiclassical results. Since Cartesian coordinates are used, the approach is general and applicable to a variety of molecular and atomic systems.  相似文献   

14.
The nonadiabatic surface hopping Herman-Kluk (HK) semiclassical initial value representation (SC-IVR) method for nonadiabatic problems is reformulated. The method has the same spirit as Tully's surface hopping technique [J. Chem. Phys. 93, 1061 (1990)] and almost keeps the same structure as the original single-surface HK SC-IVR method except that trajectories can hop to other surfaces according to the hopping probabilities and phases, which can be easily integrated along the paths. The method is based on a rather general nonadiabatic semiclassical surface hopping theory developed by Herman [J. Chem. Phys. 103, 8081 (1995)], which has been shown to be accurate to the first order in h and through all the orders of the nonadiabatic coupling amplitude. Our simulation studies on the three model systems suggested by Tully demonstrate that this method is practical and capable of describing nonadiabatic quantum dynamics for various coupling situations in very good agreement with benchmark calculations.  相似文献   

15.
We have demonstrated the use of ab initio molecular dynamics (AIMD) trajectories to compute the vibrational energy levels of molecular systems in the context of the semiclassical initial value representation (SC-IVR). A relatively low level of electronic structure theory (HF/3-21G) was used in this proof-of-principle study. Formaldehyde was used as a test case for the determination of accurate excited vibrational states. The AIMD-SC-IVR vibrational energies have been compared to those from curvilinear and rectilinear vibrational self-consistent field/vibrational configuration interaction with perturbation selected interactions-second-order perturbation theory (VSCF/VCIPSI-PT2) and correlation-corrected vibrational self-consistent field (cc-VSCF) methods. The survival amplitudes were obtained from selecting different reference wavefunctions using only a single set of molecular dynamics trajectories. We conclude that our approach is a further step in making the SC-IVR method a practical tool for first-principles quantum dynamics simulations.  相似文献   

16.
The linearized approximation to the semiclassical initial value representation (LSC-IVR) has been used together with the thermal Gaussian approximation (TGA) (TGA/LSC-IVR) [J. Liu and W. H. Miller, J. Chem. Phys. 125, 224104 (2006)] to simulate quantum dynamical effects in realistic models of two condensed phase systems. This represents the first study of dynamical properties of the Ne(13) Lennard-Jones cluster in its liquid-solid phase transition region (temperature from 4 to 14 K). Calculation of the force autocorrelation function shows considerable differences from that given by classical mechanics, namely that the cluster is much more mobile (liquidlike) than in the classical case. Liquid para-hydrogen at two thermodynamic state points (25 and 14 K under nearly zero external pressure) has also been studied. The momentum autocorrelation function obtained from the TGA/LSC-IVR approach shows very good agreement with recent accurate path integral Monte Carlo results at 25 K [A. Nakayama and N. Makri, J. Chem. Phys. 125, 024503 (2006)]. The self-diffusion constants calculated by the TGA/LSC-IVR are in reasonable agreement with those from experiment and from other theoretical calculations. These applications demonstrate the TGA/LSC-IVR to be a practical and versatile method for quantum dynamics simulations of condensed phase systems.  相似文献   

17.
Semiclassical initial value representation calculations are performed for the constrained water dimer in Cartesian coordinates. The study represents the first application of a previously reported method [Issak and Roy, J. Chem. Phys. 123, 084103 (2005); 126, 024111 (2007)] to a molecular cluster. Bound state energies are calculated for a dimer of rigid water molecules (H2O)2 as well as its deuterated form (D2O)2. The results show that the approach fares well with respect to accuracy in capturing quantum effects in intermolecular interactions.  相似文献   

18.
The linearized approximation to the semiclassical initial value representation (LSC-IVR) is used to calculate time correlation functions relevant to the incoherent dynamic structure factor for inelastic neutron scattering from liquid para-hydrogen at 14 K. Various time correlations functions were used which, if evaluated exactly, would give identical results, but they do not because the LSC-IVR is approximate. Some of the correlation functions involve only linear operators, and others involve nonlinear operators. The consistency of the results obtained with the various time correlation functions thus provides a useful test of the accuracy of the LSC-IVR approximation and its ability to treat correlation functions involving both linear and nonlinear operators in realistic anharmonic systems. The good agreement of the results obtained from different correlation functions, their excellent behavior in the spectral moment tests based on the exact moment constraints, and their semiquantitative agreement with the inelastic neutron scattering experimental data all suggest that the LSC-IVR is indeed a good short-time approximation for quantum mechanical correlation functions.  相似文献   

19.
The semiclassical propagator in the representation of SU(n) coherent states is characterized by isolated classical trajectories subjected to boundary conditions in a doubled phase space. In this paper, we recast this expression in terms of an integral over a set of initial-valued trajectories. These trajectories are monitored by a filter that collects only the appropriate contributions to the semiclassical approximation. This framework is suitable for the study of bosonic dynamics in n modes with fixed total number of particles. We exemplify the method for a Bose-Einstein condensate trapped in a triple-well potential, providing a detailed discussion on the accuracy and efficiency of the procedure.  相似文献   

20.
The construction of symmetrized powers of representations of the point groups can be deduced by decomposing the appropriate representation of the unitary group into the representations of the group of the sphere, and then mapping these representations onto the point group. The method is generally simpler than the traditional method based on the character tables of the symmetric group. As an example, the symmetry-adapted powers (N) of the representations of the icosahedral group are presented for 2≤N≤5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号