首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Production of succinic acid from glucose by Escherichia coli strain AFP184 was studied in a batch fermentor. The bases used for pH control included NaOH, KOH, NH4OH, and Na2CO3. The yield of succinic acid without and with carbon dioxide supplied by an adjacent ethanol fermentor using either corn or barley as feedstock was examined. The carbon dioxide gas from the ethanol fermentor was sparged directly into the liquid media in the succinic acid fermentor without any pretreatment. Without the CO2 supplement, the highest succinic acid yield was observed with Na2CO3, followed by NH4OH, and lowest with the other two bases. When the CO2 produced in the ethanol fermentation was sparged into the media in the succinic acid fermentor, no improvement of succinic acid yield was observed with Na2CO3. However, several-fold increases in succinic acid yield were observed with the other bases, with NH4OH giving the highest yield increase. The yield of succinic acid with CO2 supplement from the ethanol fermentor when NH4OH was used for pH control was equal to that obtained when Na2CO3 was used, with or without CO2 supplementation. The benefit of sparging CO2 from ethanol fermentation on the yield of succinic acid demonstrated the feasibility of integration of succinic acid fermentation with ethanol fermentation in a biorefinery for production of fuels and industrial chemicals.  相似文献   

2.
Pure component selectivity analysis (PCSA) was successfully utilized to enhance the robustness of a partial least squares (PLS) model by examining the selectivity of a given component to other components. The samples used in this study were composed of NH4OH, H2O2 and H2O, a popular etchant solution in the electronic industry. Corresponding near-infrared (NIR) spectra (9000-7500 cm−1) were used to build PLS models. The selective determination of H2O2 without influences from NH4OH and H2O was a key issue since its molecular structure is similar to that of H2O and NH4OH also has a hydroxyl functional group. The best spectral ranges for the determination of NH4OH and H2O2 were found with the use of moving window PLS (MW-PLS) and corresponding selectivity was examined by pure component selectivity analysis. The PLS calibration for NH4OH was free from interferences from the other components due to the presence of its unique NH absorption bands. Since the spectral variation from H2O2 was broadly overlapping and much less distinct than that from NH4OH, the selectivity and prediction performance for the H2O2 calibration were sensitively varied depending on the spectral ranges and number of factors used. PCSA, based on the comparison between regression vectors from PLS and the net analyte signal (NAS), was an effective method to prevent over-fitting of the H2O2 calibration. A robust H2O2 calibration model with minimal interferences from other components was developed. PCSA should be included as a standard method in PLS calibrations where prediction error only is the usual measure of performance.  相似文献   

3.
A novel hemin/phytic acid doped polyaniline (PA-PANI) hydrogel composite was prepared through a simple chemical and self-assembly method, which was modified onto electrode for electrochemical detection of H2O2 released from living cells. It showed good analytical performance with high sensitivity, selectivity and a rapid response for the analysis of H2O2 in the range of 2 to 102 μM, with the detection limit of 1.2 μM. The favorable results mainly originated from both the high conductivity of PA-PANI hydrogel and its network structure preventing hemin from self-dimerization to provide active catalytic species. Furthermore, PA-PANI with good biocompatibility allowed living cells to adhere and resulted in a short diffusion distance between H2O2 released from cells and electrode.  相似文献   

4.
Pretreatment of two different softwood-based lignocellulosic wastes (newsprint and Kraft pulp mill sludge) was investigated. Pretreatment was done by aqueous ammonia and hydrogen peroxide (H2O2), two delignifying reagents that are environmentally benign. Three different treatment schemes were employed: aqueous ammonia alone (ammonia recycled percolation [ARP]), mixed stream of aqueous ammonia and H2O2 and successive treatment with H2O2 and aqueous ammonia. In all cases there was a substantial degree of delignification ranging from 30 to 50%. About half of the hemicellulose sugars were dissolved into the process effluent. Retention of cellulose after pretreatment varied from 85 to 100% for newspaper feedstock and from 77 to 85% for the pulp mill sludge. After treatment with aqueous ammonia alone (ARP), the digestibility of newspaper and the pulp mill sludge was improved only by 5% (from 40 to 45% for the former and from 68 to 73% for the latter), despite a substantial degree of delignification occurring after the ARP process. The lign in content thus did not correlate with the digestibility for these substrates. Simultaneous treatment with H2O2 and aqueous ammonia did not bring about any significant improvement in the digestibility over that of the ARP. A succcessive treatment by H2O2 and ARP showed the most promise because it improved the digestibility of the newspaper from 41 to 75%, a level comparable to that of α-cellulose.  相似文献   

5.
The desorption of oxygen from polycrystalline palladium (Pd(poly)) was studied using temperature-programmed desorption (TPD) at 500–1300 K and the amounts of oxygen absorbed by palladium (n) from 0.05 to 50 monolayers. It was found that the desorption of O2 from Pd(poly), which occurred from a chemisorbed oxygen layer (Oads), in the release of oxygen from a near-surface metal layer in the course of the decomposition of PdO surface oxide, and in the release of oxygen from the bulk of palladium (Oabs), was governed by repulsive interactions between Oads atoms and the formation and decomposition of Oads-Pd*-Oabs structures (Pd* is a surface palladium atom). At θ ≤ 0.5, the repulsive interactions between Oads atoms (ɛaa = 10 kJ/mol) resulted in the desorption of O2 from Pd(poly) at 650–950 K. At 0.5 ≤ n ≤ 1.0, the release of inserted oxygen from a near-surface palladium layer occurred during TPD in the course of the migration of Oabs atoms to the surface and the formation-decomposition of Oads-Pd*-Oabs structures. As a result, the desorption of O2 occurred in accordance with a first-order reaction with a thermal desorption (TD) peak at T max ∼ 700 K. At 1.0 ≤ n ≤ 2.0, the decomposition of PdO surface oxide occurred at a constant surface cover-age with oxygen during TPD in the course of the formation-decomposition of Oads-Pd*-Oabs structures. Because of this, the desorption of O2 occurred in accordance with a zero-order reaction at low temperatures with a TD peak at T max ∼ 675 K. At 1.0 ≤ n ≤ 50, oxygen atoms diffused from deep palladium layers in the course of TPD and arrived at the surface at high temperatures. As a result, O2 was desorbed with a high-temperature TD peak at T > 750 K.  相似文献   

6.
Indium (In) was recovered from indium oxide (In2O3) and liquid crystal display (LCD) powder via a chloride volatilization process using polyvinyl chloride (PVC) as the chlorination agent. The recovery of In from In2O3 increased with an increasing molar Cl/In ratio in N2 and air atmospheres. The degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 °C was 98.7% and 96.6%, for N2 and air, respectively. The In recovery also increased notably with increasing temperature in N2 atmosphere. In both atmospheres, the In recovery increased with an increasing degradation temperature of PVC. However, the In recovery from LCD powder was lower than that from In2O3. For LCD powder, the degree of In recovery at a Cl/In molar ratio of 11 and a temperature of 350 °C was 66.7% and 54.1%, for N2 and air, respectively.  相似文献   

7.
An efficient synthesis of dithiocarbamic acid esters from Michael addition of electron-deficient alkenes with arylamines and CS2 in solid media alkaline Al2O3 was presented. This method was suitable for a wide range of amines and a variety of Michael receptors. Specially, a series of aryldithiocarbamic acid esters was obtained from arylamines through this method. The protocol offers clean reactions and high yields with simple experimental procedures. Besides, the alkaline Al2O3 could be reused.  相似文献   

8.
Single crystals with compositions within the Fe2O3TiO2 system were grown from a flux containing various amounts of the basic oxides. Apart from the known pseudobrookite (Fe2TiO5) and rutile (TiO2) structures, a new monoclinic polytype of Fe2TiO5 was found, which was isostructural with V3O5. The structure was determined by X-ray analysis and Mössbauer spectroscopy contributed data on hyperfine parameters and the magnetic ordering temperature.  相似文献   

9.
The effect of dissolved carbon dioxide on the glass transition temperature of a polymer, PMMA, has been investigated using molecular probe chromatography. The probe solute was iso-octane, and the specific retention volumes of this solute in pure PMMA and mixtures of PMMA with CO2 were measured over a temperature range of 0 to 180°C and CO2 pressures from 1 to 75 atm. The amount of CO2 dissolved in the polymer was calculated from a model fit to previously published solubility data determined chromatographically. Classical van't Hoff-type plots were used to determine the glass transition temperature of CO2-impregnated PMMA from low pressure up to 46 atm of CO2. Solvent-induced plasticization was observed with the glass transition temperature decreasing by about 40°C. At some pressures, glass transitions at low temperatures could not be determined from the van't Hoff plots because of the proximity of the polymer glass transition temperature to the gas–liquid transition temperature for CO2. For these pressures, a new method was developed to determine the glass transition composition. The glass transition pressure was then calculated from the measured composition and temperature using an isotherm model. In every case, the glass transition temperature decreased linearly with increasing concentration of CO2 in the polymer. However, at higher compositions, the glass transition pressure decreased with increasing composition and decreasing temperature. The observed retention volume of iso-octane with PMMA in a glassy state was correlated with an adsorption model developed from a theory for liquid–solid chromatography derived by Martire. This model accurately described the observed decrease in retention of iso-octane by adsorption on the surface of glassy PMMA with increasing concentration of CO2 dissolved in the polymer. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2537–2549, 1998  相似文献   

10.
《中国化学快报》2020,31(7):1843-1846
The metal organic framework functionalized with sulfonic acid was combined with magnetic nanoparticles to fabricate a new nanocomposite (denoted as Fe3O4@PDA@Zr-SO3H). By combining with gas chromatography-electron capture detector, the resulting Fe3O4@PDA@Zr-SO3H nanocomposite was successfully used as a high-efficiency adsorbent for pre-concentrating eight organochlorine pesticides from water sample in environment. Apart from the ability of fast separation, the as-prepared Fe3O4@PDA@Zr-SO3H nanocomposite also exhibited high adsorption capacity for organochlorine pesticides. With the use of optimal experimental conditions, the linear relationship can be obtained in the range of 0.05∼300 μg/L, the correlation coefficient was over 0.9978, and the relative standard deviation was located in 2.5%–7.7%. Moreover, the limit of detection and quantification was between 0.005–0.016 μg/L and 0.017∼0.050 μg/L. Finally, the nanocomposite was used for the determination of organochlorine pesticides from environmental water samples, and displayed the recovery of 82%–118%.  相似文献   

11.
The diatreme facies of a pipe was found partly exposed approximately 15 km northeast of Dreikeesh, NW Syria. Petrographic, chemical, and microprobe analyses revealed the presence of a mixture of asthenospheric kimberlite-pyrope peridotite-basanite, with some lithospheric-lower crust xenoliths and xenocrysts. Microprobed black inclusions, 30-35 vol.% in one olivine grain, were found to be graphite. A second microprobed clean octahedral grain showed 19.26 wt.% carbon, in addition to the presence of olivine or pyroxene, and a trace of S. The C/SiO2 molecular ratio in these inclusions was found to be 3/1 in favor of carbon, which could be diamond. The Cr2O3 (pyrope)/Cr2O3 (augite) was 0.86, indicating an asthenospheric origin for the two minerals. It was found that the temperature-pressure conditions for the Ni-Cr association with pyrope, and consequently for the formation of diamond, were approximately 1460 °C and 207 km depth. The compatible association of diamond with silicate phases, chromite, and sulfides suggest that diamond could originate from a silicate-oxide-sulfide-carbon melt deep in the asthenosphere. It is proposed that diamonds can be formed from carbon dioxide released from partially melted olivine grains under appropriate high temperature-pressure conditions. Carbon could be released from the reaction of CO2 with Fe2+ in fractured olivines and pyroxenes, or from the reaction of CO2 with CH4 (assuming that CH4 was present). The liberated carbon could then covalently bond to form diamond.  相似文献   

12.
A mode-filtered light sensor has been developed for methane (CH4) gas determination at ambient conditions. The proposed chemosensor consisted of an annular column which was constructed by inserting an optical fiber coated with a thin silicone cladding of cryptophane A into a fused-silica capillary. When CH4 was introduced to the sensor, selective inclusion of CH4 into the silicone layer would cause a change in the local refractive index of the cladding, resulting in the change of mode-filtered light that emanated from the fiber. Three detection windows were set alongside the capillary to propagate the light to a charge-coupled device (CCD). The changes of mode-filtered light on exposure to various concentrations of CH4 were thus simultaneously monitored. The mode-filtered light intensity decreased with the increase in concentration of CH4. The dynamic concentration range of the sensor for CH4 was 0.0-16.0% v/v with a detection limit of 0.15% v/v. The highest sensitivity was found at the channel furthest away from the excitation light source. The response time (t95%) was about 5 min. The reproducibility was good with a relative standard deviation (RSD) of less than 7% from evaluating six cryptophane A-coated fibers. Oxygen, hydrogen and carbon dioxide showed very little interference on detection but interferences from dichloromethane and carbon tetrachloride were observed. The proposed mode-filtered light sensor has been successfully applied to determine CH4 samples and the accuracy was good. Our work offers a promising approach for CH4 detection.  相似文献   

13.
UO2 (NO3)2 was irradiated with a 25 MeV/nucleon40Ar ion beam. The target material irradiated was dissolved in ethyl ether, and the uranyl was removed from the back extractant 5M HNO3 saturated with NH4NO3 by means of solvent extraction with TBP in CCl4. A carrier-free multitracer solution containing 47 elements from Na to Bi and 83 radionuclides was prepared and has been applied to adsorption studies on alumina and soils.  相似文献   

14.
Pseudomonas fluorescens, immobilized on soft polyvinyl chloride granules containing up to 35% softeners as carbon source, was used for simultaneous removal of nitrate and heavy metals. In typical continuous column operation, a 100 mg/L nitrate input solution was reduced to a 20 mg/L output at a feeding rate of 1500 mL/h, with a capacity of 14 kg/day/m3, and with an efficiency of 79%. In the same column, Pb(NO3)2 concentration was reduced from 1.0 to 0.05−0.1 mg/L and ZnSO4 concentration was reduced from 10 to 5 mg/L.Pseudomonas aeruginosa immobilized on an O2 plasma-treated melt blown polypropylene web was used for removing 95% of a 1.7 nCi PuCl4 activity from a nuclear plant waste water in a batch operation.  相似文献   

15.
KTiOPO4 crystals, both pure and doped with rubidium Rb+ and fluorine F ions, were grown in temperature range from 1060 to 846°С from salt solvent containing potassium metaphosphate КРО3 and potassium orthophosphate К3РО4 by using a Czochralski modified method. Potassium–sodium titanyl phosphate crystals were obtained from KTiOPO4 crystals by the potassium isomorphic replacement with sodium; to this purpose, sodium chemical diffusion from NaNO3 melt was used. Their ionic conductivity was studied by the electrochemical impedance spectroscopy method. The KTiOPO4 crystal doping with rubidium and sodium ions was shown to lower the conductivity, whereas the doping with fluorine ions results in increased conductivity.  相似文献   

16.
将高锰酸钾与活性炭(AC)原位氧化还原制备的活性炭载锰氧化物(MnOx/AC)用作臭氧分解的催化剂. 采用扫描电镜、X射线光电子能谱、X射线衍射、电子自旋共振波谱、拉曼光谱以及程序升温还原研究了设计Mn负载量对负载锰氧化物性质(形貌、氧化态和晶体结构)的影响. 结果表明,Mn负载量由0.44%增至11%,负载锰氧化物在活性炭表面由疏松的地衣状变为堆叠的纳米球状体,负载层的厚度由~180 nm增加至~710 nm,结构由氧化态+2.9到+3.1的低结晶β-MnOOH生长为由氧化态+3.7到+3.8的δ-MnO2结晶. MnOx/AC室温催化分解低浓度臭氧的活性与负载锰氧化物的形貌及含量密切相关. Mn负载量为1.1%的MnOx/AC具有疏松的地衣状形貌,催化分解臭氧的性能最高,Mn负载量为11%的MnOx/AC具有紧密的堆积结构,因而表现出最低的催化臭氧分解活性.  相似文献   

17.
The phase transitions of Ba2-xSrxIn2O5 were investigated with various thermal analyses and high-temperature X-ray diffraction. It was clarified that crystal structure of Ba2-xSrxIn2O5 with x=0.0~0.4 varies from brownmillerite through distorted perovskite to another distorted perovskite with increase of temperature. The phase transition from brownmillerite to distorted perovskite was revealed to be first order, whereas transition from distorted perovskite to another one was second order. The specimen with x≥0.5 showed only one first order phase transition from brownmillerite to distorted perovskite. The phase diagram of Ba2-xSrxIn2O5 was established and existence of tricritical point at ~1100°C with x=0.4~0.5 was suggested. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
99Mo was separated from uranium and insoluble fission product hydroxides. More than 98% of99Mo radioactivity was extracted with bis (2-ethylhexyl)phosphoric acid. The organic phase was washed and99Mo was back-extracted from the organic phase with NH4OH solution. The percent recovery from the organic phase was 91% and the purity of99Mo was more than 99%. Pure99mTc was also extracted from the organic phase with a saline solution. Reversed-phase partition chromatography was used for the purification of99Mo from131I and other fission products (10% HDEHP on kieselguhr bed).131I and other isotopes were quantitatively eluted with 0.1M H2SO4,99Mo was eluted using a mixture of 0.5 M HCl and 30% H2O2.  相似文献   

19.
The interaction of a range of organic halides with (Cl3Si)2 or (Me3Si)2 in the presence of a variety of transition metal catalysts (very predominantly Pd0 or PdII complexes) have been examined. PhSiMe3 was formed from PhCl[m.y., 15%] (m.y. - maximum yield), PhBr (m.y., 92%, with [PdL2Br2] as catalyst (L - PPh3)), and (contrary to earlier reports) PhI (m.y. 51%, with [PdL2I2]). MeSiCl3 was formed from MeBr (m.y., 78% with [PdL4]) and MeI (m.y., 91% with [PdL4]), and EtSiCl3 from EtBr (m.y., 49%, with [PdL2“Br2]; L” - P(C6H4OMe-p)3) and EtI (m.y. 45%, with [PdL4]). Me4Si was satisfactorily formed from MeBr (m.y. 42%, with [PdL4]). Evidence was obtained for the formation of Me3SiCF3 from CF3I. Very poor yields of XC6H4CH2SiMe3 were obtained from XC6H4CH2Br (X - H orp-Me) (with X - H some PhSiMe3 was formed), butp-O2NC6H4CH2SiMe3 was formed in 48% yield fromp-O2NC6H4CH2Cl with [PdL“4] as catalyst. PhCOSiMe3 was formed from PhCOCl (m.y. 52% with [PdL2I2]. The nickel complex [NiL4] was moderately effective as a catalyst for reactions between (Cl3Si)2 and MeBr, EtBr, or PhCH2Br. The new complex [PdL2(SiCl3)2] was prepared by treatment of [PdL4] with (Cl3Si)2 or Cl3SiH, and shown to catalyse the reaction between MeBr and (Cl3Si)2.  相似文献   

20.
The in situ open‐circuit voltages (Voc) and the in situ photoconductivities have been measured to study electron behavior in photocatalysis and its effect on the photocatalytic oxidation of methanol. It was observed that electron injection to the conduction band (CB) of TiO2 under light illumination during photocatalysis includes two sources: from the valence band (VB) of TiO2 and from the methanol molecule. The electron injection from methanol to TiO2 is slower than that directly from the VB, which indicates that the adsorption mode of methanol on the TiO2 surface can change between dark and illuminated states. The electron injection from methanol to the CB of TiO2 leads to the upshift of the Fermi level of electrons in TiO2, which is the thermodynamic driving force of photocatalytic oxidation. It was also found that the charge state of nano‐TiO2 is continuously changing during photocatalysis as electrons are injected from methanol to TiO2. Combined with the apparent Langmuir–Hinshelwood kinetic model, the relation between photocatalytic kinetics and electrons in the TiO2 CB was developed and verified experimentally. The photocatalytic rate constant is the variation of the Fermi level with time, based on which a new method was developed to calculate the photocatalytic kinetic rate constant by monitoring the change of Voc with time during photocatalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号