首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs. The project supported by China postdoctoral science foundation (20060390260) and Hunan Postdoctoral Scientific Program. The English text was polished by Yunming Chen.  相似文献   

2.
Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs.  相似文献   

3.
Based on linear three-dimensional piezoelasticity, the Legendre orthogonal polynomial series expansion approach is used for determining the wave characteristics in hollow cylinders composed of the functionally graded piezoelectric materials (FGPM) with open circuit. The displacement and electric potential components, expanded in a series of Legendre polynomials, are introduced into the governing equations along with position-dependent material constants so that the solution of the wave equation is reduced to an eigenvalue problem. Dispersion curves for FGPM and the corresponding non-piezoelectric hollow cylinders are calculated to show the piezoelectric effect. The influence of the ratio of radius to thickness is discussed. Electric potential and displacement distributions are used to show the piezoelectric effect on the flexural torsional mode. The influence of the polarizing direction on the piezoelectric effect is illustrated. For the radial and axial polarization, the piezoelectric effect reacts mostly on the longitudinal mode. For circumferential polarization, the piezoelectric effect reacts mostly on the torsional mode. In the FGPM hollow cylinder, piezoelectricity can weaken the guided wave dispersion.  相似文献   

4.
The dynamic propagation of an interface crack between two dissimilar functionally graded piezoelectric material (FGPM) layers under anti-plane shear is analyzed using the integral transform method. The properties of the FGPM layers vary continuously along the thickness. The properties of the FGPM layers vary differently and the two layers are connected weak-discontinuously. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to two sets of dual integral equations, which are then expressed to the Fredholm integral equations of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM to show the effects on the electric loading, gradient of material properties, crack moving velocity, and thickness of layers. Followings are helpful to increase of the resistance of the interface crack propagation of FGPM: (a) certain direction and magnitude of the electric loading; (b) increase of the gradient of material properties; (c) increase of the material properties from the interface to the upper and lower free surface; (d) increase of the thickness of FGPM layer. The DERR increases or decreases with increase of the crack moving velocity.  相似文献   

5.
Analytical solutions to rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially in the radial direction, and Poisson's ratio is assumed to be constant. A unified governing equation is derived from the equilibrium equations, compatibility equation, deformation theory of elasticity and the stress-strain relationship. The governing second-order differential equation is solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders. Dependence of stresses in the cylinder on the inhomogeneous parameters, geometry and boundary conditions is examined and discussed. The proposed solution is validated by comparing the results for rotating functionally graded hollow and solid cylinders with the results for rotating homogeneous isotropic cylinders. In addition, a viscoelastic solution to the rotating viscoelastic cylinder is presented, and dependence of stresses in hollow and solid cylinders on the time parameter is examined.  相似文献   

6.
This paper presents an analytical solution of a thick walled cylinder com- posed of a functionally graded piezoelectric material (FGPM) and subjected to a uniform electric field and non-axisymmetric thermo-mechanical loads. All material properties, except Poisson's ratio that is assumed to be constant, obey the same power law. An exact solution for the resulting Navier equations is developed by the separation of variables and complex Fourier series. Stress and strain distributions and a displacement field through the cylinder are obtained by this technique. To examine the analytical approach, different examples are solved by this method, and the results are discussed.  相似文献   

7.
 In this paper the radial deformation and the corresponding stresses in a non-homogeneous hollow elastic cylinder rotating about its axis with a constant angular velocity is investigated. The material of the cylinder is assumed to the non-homogeneous and cylindrically orthotropic. The system of fundamental equations is solved by means of a finite difference method and the numerical calculations are carried out for the temperature, the components of displacement and the components of stress with the time t and through the thickness of the cylinder. The results indicate that the effect of inhomogeneity is very pronounced. Received on 21 December 2000  相似文献   

8.
In this paper, heat wave propagation and coupled thermoelasticity without energy dissipation in functionally graded thick hollow cylinder is presented based on Green–Naghdi theory. The material properties are supposed to vary as a power function of radius across the thickness of cylinder. The cylinder is considered in axisymmetry and plane strain conditions and it is divided to many sub-cylinders (layers) across the thickness. Each sub-cylinder is considered to be made of isotropic material and functionally graded property can be created by suitable arrangement of layers. The Galerkin finite element method and Newmark finite difference method are employed to solve the problem. The time history of second sounds and displacement wave propagation are obtained for various values of power function. Computed results agree well with the published data.  相似文献   

9.
In the present paper, the analytical solution for a radially piezoelectric functionally graded rotating hollow shaft is presented. The variation of material properties is assumed to follow a power law along the radial direction of the shaft. Two resulting fully coupled differential equations in terms of the displacement and electric potential are solved directly. Numerical results for different shaft geometries with different profiles of inhomogeneity are also graphically displayed.  相似文献   

10.
In this paper, the mixed-mode crack problem for a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the electroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under in-plane electric loading. The problem is formulated in terms of a system of singular integral equations. The stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

11.
This paper presents an analytical solution for the interaction of electric potentials,electric displacements,elastic deformations,and thermoelasticity,and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures(cylinder or sphere),subjected to mechanical load and electric potential.The material properties,thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution.In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material,reinforced by elastic isotropic fibers,this material is considered as structurally anisotropic material.The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity,and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin’s approximation method.Finally,numerical results are carried out and discussed.  相似文献   

12.
Solved is the problem of a crack in a functionally graded piezoelectric material (FGPM) bonded to two elastic surface layers. It is assumed that the elastic stiffness, piezoelectric constant, and dielectric permittivity of the FGPM vary continuously along the thickness of the strip. The outside layers are under antiplane mechanical loading and in-plane electric loading. The solution involves solving singular integral equations by application of the Gauss–Jacobi integration formula. Numerical calculations are carried out to obtain the energy density factors. Their variations with the geometric, loading and material parameters are shown graphically.  相似文献   

13.
In this paper, the mixed-mode penny-shaped crack problem for a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the electroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under in-plane electromechanical loadings. The problem is formulated in terms of a system of singular integral equations. The stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

14.
Exact solutions are obtained for transient torsio- nal responses of a finitely long, functionally graded hollow cylinder under three different end conditions, i.e. free-free, free-fixed and fixed-fixed. The cylinder with its external surface fixed is subjected to a dynamic shearing stress at the internal surface. The material properties are assumed to vary in the radial direction in a power law form, while keep invariant in the axial direction. With expansion in the axial direction in terms of trigonometric series, the governing equations for the unknown functions about the radial coordinate r and time t are deduced. By applying the variable substitution technique, the superposition method and the separation of variables consecutively, series-form solutions of the equations are obtained. Natural frequencies and the transient torsional responses are finally discussed for a functionally graded finite hollow cylinder.  相似文献   

15.
The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors.  相似文献   

16.
In this article, we study the axisymmetric tor-sional contact problem of a half-space coated with func-tionally graded piezoelectric material (FGPM) and subjected to a rigid circular punch. It is found that, along the thick-ness direction, the electromechanical properties of FGPMs change exponentially. We apply the Hankel integral trans-form technique and reduce the problem to a singular integral equation, and then numerically determine the unknown con-tact stress and electric displacement at the contact surface. The results show that the surface contact stress, surface azimuthal displacement, surface electric displacement, and inner electromechanical field are obviously dependent on the gradient index of the FGPM coating. It is found that we can adjust the gradient index of the FGPM coating to modify the distributions of the electric displacement and contact stress.  相似文献   

17.
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca’s yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considering different material compositions as well as a wide range of bore radii, it is demonstrated in this article that both the elastic and the elastoplastic responses of a rotating FGM hollow shaft are affected significantly by the material nonhomogeneity.  相似文献   

18.
Based on the theory of piezoelasticity, a functionally graded piezoelectric sandwich cantilever under an applied electric field and/or a heat load is studied. All materials may be arbitrary functional gradients in the thickness direction. The static solution for the mentioned problems is presented by the Airy stress function method. As a special case, assuming that the material composition varies continuously in the direction of the thickness according to a power law distribution, a comprehensive parametric study is conducted to show the influence of electromechanical coupling (EMC), functionally graded index, temperature change and thickness ratio on the bending behavior of actuators or sensors. The distribution of electric field or normal stress in present FGPM actuators is continuous along the thickness, which overcomes the problem in traditional layered actuators. The solution facilitates the design optimization for different piezoelectric actuators and has another potential application for material parameter identification.  相似文献   

19.
The dynamic fracture problem for a functionally graded piezoelectric material (FGPM) strip containing a crack parallel to the free boundaries is considered in this study. It is assumed that the electroelastic properties of the strip vary continuously along the thickness direction of the strip, and that the strip is under the in-plane mechanical and electric impact. Integral transform techniques and dislocation density functions are employed to reduce the problem to the solutions of a system of singular integral equations. The dynamic stress and electric displacement intensity factors versus time are presented for various values of dimensionless parameters representing the crack size, the crack location, the material nonhomogeneity and the loading combination.  相似文献   

20.
The frictionless contact problem of a functionally graded piezoelectric layered half-plane in-plane strain state under the action of a rigid flat or cylindrical punch is investigated in this paper. It is assumed that the punch is a perfect electrical conductor with a constant potential. The electro-elastic properties of the functionally graded piezoelectric materials (FGPMs) vary exponentially along the thickness direction. The problem is reduced to a pair of coupled Cauchy singular integral equations by using the Fourier integral transform technique and then is numerically solved to determine the contact pressure, surface electric charge distribution, normal stress and electric displacement fields. For a flat punch, the normal stress intensity factor and electric displacement intensity factor are also given to quantitatively characterize the singularity behavior at the punch ends. Numerical results show that both material property gradient of the FGPM layer and punch geometry have a significant influence on the contact performance of the FGPM layered half-plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号