首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The aim of this work is to show a better comprehension of the flow structure and thermal transfer in a rotor-stator system with a central opening in the stator and without an airflow imposed. The experimental technique uses infrared thermography to measure the surface temperatures of the rotor and the numerical solution of the steady-state heat equation to determine the local heat transfer coefficients. Analysis of the flow structure between the rotor and the stator is conducted by PIV. Tests are carried out for rotational Reynolds numbers ranging from 5.87×104 to 1.4×106 and for gap ratios ranging from 0.01 to 0.17. Analysis of the experimental results has determined the influence of the rotational Reynolds number, the gap ratio and systems geometry on the flow structure, and the convective exchanges in the gap between the rotor and the stator. Some correlations expressing the local Nusselt number as a function of the rotational Reynolds number and the gap ratio are proposed.  相似文献   

2.
A generalized finite volume method that can solve the Euler equations for the stator and rotor parts of stage flow in similar formulations is presented. The method consists of a new moving grid finite volume formulation applied to the rotor region and the existing fixed grid finite volume method used in the stator region, with the data transfer made by an interpolation procedure at the sliding surface in between. The accuracy of the method has been demonstrated on a simple cascade flow before the time-dependent compressor stage flow is fully investigated. The transonic stator-rotor flow interaction is elucidated within the inviscid and rotational flow limit.  相似文献   

3.
吴先鸿  陈矛章 《力学学报》1998,30(3):257-266
发展了一种研究叶轮机内动、静叶间的相互作用的新方法———扰动涡方法,它利用全三维的定常解为基础解,并由此给出非定常扰动场的初始解.为计算叶片对扰动场的响应过程,采用拉格朗日方法追踪扰动涡团的对流流动过程,用确定性涡方法来描述流体的粘性扩散过程.发展了代数湍流模型(Baldwin Lomax湍流模型)在尾迹中的应用方法,克服了其它数值方法中无法准确捕捉尾迹中心线的运动轨迹,以及计算出的边界层外的湍流涡粘性系数偏大的缺陷.利用该方法计算轴流叶轮机内由于动、静叶间的相互作用而引起的非定常流动过程,与实验的对照表明,模拟结果与实验数据吻合得相当好,从而说明本文发展的方法是可信的,为更直观地描述尾迹等非定常因素的流动及叶轮机内的掺混问题提供依据.  相似文献   

4.
粗糙度对大间隙环流偏心转子动特性系数的影响   总被引:9,自引:1,他引:8  
孙启国  虞烈 《摩擦学学报》2000,20(5):365-369
基于作者建立的大间隙环流中转子运动的理论模型,用摄动法推导了大间隙环流流场非线性控制方程的一阶摄动方程,采用数值方法研究了静子和转子壁面粗糙度对大间隙环流中偏心转子动特性系数的影响。研究结果表明:静子和转子壁面粗糙度对大间隙环流中偏心转子动特性系数有较大影响。所得到的数值结果与已有的解析解和实验结果具有较好的一致性。  相似文献   

5.
In many industrial processes as well as in air conditioning systems heat and moisture is transferred by rotary heat exchangers from the warm exhaust air flow to the cold supply air flow. Rotary heat exchangers are classified as sorption rotors, hygroscopic rotors and condensation rotors. Basic mechanisms of heat and moisture transfer are presented. By means of the condensation potential as the difference between the moisture content of the warm air flow and the moisture content of the cold air flow at saturation the humidity transfer at the different rotor types is investigated. The condensation potential as a reference parameter provides the possibility to describe the influence of various air conditions in exhaust air and supply air flow on the humidity transfer of different rotary heat exchangers and to compare these rotors with each other. In order to give an overview of relevant design parameters, the influence of the speed of turning, the flute height of the rotor matrix and the velocity of the air flow regarding the heat and mass transfer is considered.  相似文献   

6.
有限长大间隙环流中同心转子动特性系数研究   总被引:5,自引:0,他引:5  
孙启国  虞烈 《摩擦学学报》2001,21(6):473-477
基于作者建立的大间隙环流中转子运动理论模型,用摄动法推导了有限长大间隙环流流场非线性控制方程的零阶和一阶摄动方程,研究了摄动方程的数值求解方法,并用该数值方法深入研究了有限长大间隙环流中同心转子的动特性系数以及壁面粗糙度、入口压力、长径比和入口预旋等参数的影响,研究结果表明,系统参数对有限长大间隙环流中同心转子动特性系数的影响是流体惯性效应、旋流效应、摩擦耗散效应和Lomakin效应综合影响的因素。  相似文献   

7.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

8.
The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel(formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium.The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates.The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles.Then,the skin friction and the rate of heat transfer are consequently derived.It is noticed that,at different sections within the vertical channel,the fluid flow and the temperature profiles increase with time,which are both higher near the moving plate.In particular,increasing the gap between the plates increases the velocity and the temperature of the fluid,however,reduces the skin friction and the rate of heat transfer.  相似文献   

9.
The natural convection heat transfer of air in a porous media can be controlled by gradient magnetic field. Thermomagnetic convection of air in a porous cubic enclosure with an electric coil inclined around the $Y$ axis was numerically investigated. The Biot–Savart law was used to calculate the magnetic field. The governing equations in primitive variables were discretized by the finite-volume method and solved by the SIMPLE algorithm. The flow and temperature fields for the air natural convection were presented and the mean Nusselt number on the hot wall was calculated and compared. The results show that both the magnetic force and coil inclination have significant effect on the flow field and heat transfer in a porous cubic enclosure, the natural convection heat transfer of air can be enhanced or controlled by applying gradient magnetic field.  相似文献   

10.
The object of the present work is to produce a better understanding of the flow and heat transfer process occurring in a rotor-stator system, with a low aspect ratio and subjected to a superposed radial inflow. The theoretical approach presented in a previous paper (Debuchy et al., Eur. J. Mech. B-Fluids 17 (6) (1998) 791–810) in the framework of laminar, steady, axisymmetric flow is extended to heat transfer effects. The asymptotic model is simplified and new integral relations including temperature are indicated. The experiments, made in a rotor–stator system with a heated stationary disc, are in agreement with the features of the model in the explored range of the gap ratio, Ekman and Rossby numbers. The data include radial and circumferential mean velocity components, air temperature inside the cavity, temperature and temperature-velocity correlations, and also local Nusselt numbers measured on the stationary disc. The flow structure near the axis is found to be strongly affected by the presence of a superposed inflow, as already observed under isothermal conditions. By contrast, the mean temperature, as well as the correlations concerning velocity and temperature are smaller when a radial inflow is assigned.  相似文献   

11.
The nonlinear vibration of a rotor operated in a magnetic field with geometric and inertia nonlinearity is investigated. An asymmetric magnetic flux density is generated,resulting in the production of a load on the rotor since the air-gap distribution between the rotor and the stator is not uniform. This electromagnetic load is a nonlinear function of the distance between the geometric centers of the rotor and the stator. The nonlinear equation of motion is obtained by the inclusion of the nonlinearity in the inertia, the curvature, and the electromagnetic load. After discretization of the governing partial differential equations by the Galerkin method, the multiple-scale perturbation method is used to derive the approximate solutions to the equations. In the numerical results, the effects of the electromagnetic parameter load, the damping coefficient, the amplitude of the initial displacement, the mass moment of inertia, and the rotation speed on the linear and nonlinear backward and forward frequencies are investigated. The results show that the magnetic field has significant effects on the nonlinear frequency of oscillation.  相似文献   

12.
Interaction of a rotor with a stationary part is a kind of serious malfunction that could result in a catastrophic failure if remained undetected. Past analytical and numerical simulation work on rotor?Cstator interactions mainly focus on the vibrations along the lateral directions. The torsional degree of freedom (dof) is usually ignored. The present work is aimed to study the influence of a rotor to stator contact on the lateral-torsional coupled vibrations. A mathematical model consisting of interacting vibratory systems of rotor and stator is presented. The contact is modeled using contact stiffness, damping and Coulomb friction. Equations derived for kinetic, potential and dissipation energies and non-conservative external forces are used in the Langrange??s equations for deriving the motion equations for the rotor?Cstator system. Equations revealed that the lateral-torsional motion coupling exists twofold for the rotor. The unbalance couples lateral-torsional motion of rotor through inertia and damping matrices. Coupling due to the rotor?Cstator friction occurs through a force vector. The nonlinear equations are solved using a Runge?CKutta fourth-order numerical integration scheme using relatively small time step. Results obtained through the proposed model are compared with the identical rotor?Cstator system without torsional dof and differences are identified. Effect of several parameters such as speed, relative inertia, coefficient of friction and contact damping on the bifurcation behavior of the rotor?Cstator motion has been investigated. Vibration motions presented in the forms of spectrum cascade of the coast-up response, and orbit and Poincaré plots of the steady-state response are exhibiting rich dynamic behavior of the system.  相似文献   

13.
The high performance and efficiency of modern gas turbines are only possible with temperatures inside the engine exceeding the allowed material temperatures in some areas by several hundred degrees. Therefore effective cooling methods are one of the key factors for the success of these engines. In order to achieve reliable predictions of the heat load of rotor or stator blades numerous research activities were performed to understand the nature of heat transfer in complex unsteady flows. Even numerical methods have made significant progress in recent years detailed experimental data are still necessary for validation and further development of the engines and the design tools. Here a new method to directly measure the heat flux at the material surface and accurately determine the heat transfer coefficienth is presented. The new sensor is based on the anisotropic characteristics of single crystals and allows the determination of the time varying heat flux on the surface of a model turbine airfoil. This feature is of special interest to study the influence of periodically disturbed flow conditions on the heat transfer characteristics of cooled turbine blades. The working principle of an anisotropic heat flux (AHF) sensor is briefly described together with the design of the actual sensor used in this study. Prior to the application of the sensor in a cascade test rig, comprehensive test of the sensor, the electronics and the data acquisition system were performed using a pulsed laser beam as heat source. To test the sensor under realistic conditions a large number of sensor was installed in a test blade and heat transfer measurements were performed in a cascade test rig equipped with a spoke-wheel wake generator. The results showed good agreement in the time mean results compared with standard techniques. Additionally time resolved data could be extracted from the sensor signals providing detailed information on the unsteady heat transfer characteristics and boundary layer development. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Performing PIV measurements within complex turbomachinery with multiple blade rows is difficult due to the optical obstruction to the illuminating sheet and to the camera caused by the blades. This paper introduces a refractive index matched facility that overcomes this problem. The rotor and stator blades are made of transparent acrylic, and the working fluid has the same optical refractive index as the blades. A 64% by weight solution of sodium iodide in water is used for this purpose. This liquid has a kinematic viscosity of about 1.1᎒-6 m2/s, which is almost the same as that of water enabling operation at high Reynolds numbers. Issues related to operating with this fluid such as chemical stability, variations in transmittance and solutions to these problems are discussed. This setup allows full optical access to the entire rotor and stator passages both to the laser sheet and the camera. The experiments are conducted at different streamwise locations covering the entire flow fields around the rotor, the stator, the gap between them, and the wakes behind. Vector maps of the instantaneous and phase-averaged flow fields as well as the distribution of turbulent kinetic energy are obtained. Measurements at different magnifications enable us to obtain an overview of the flow structure, as well as detailed velocity distributions in the boundary layers and in the wakes.  相似文献   

15.
基于气体润滑理论,并通过小扰动法建立了螺旋槽干气密封微扰膜压控制方程,在高速高压条件下获得了气膜动态特性系数;基于动力学相关知识,在考虑转轴轴向振动的情况下,利用气膜轴向动态刚度和阻尼系数分别求解了静环挠性安装、动环挠性安装和两环均挠性安装的干气密封挠性环运动方程.在不同轴向激励振幅、激励频率、挠性环质量、弹簧刚度和辅助密封圈阻尼下分别研究了三种典型结构干气密封动态追随性并进行了对比分析.结果表明:当轴向激励频率较高或挠性环质量较大时,静环挠性安装干气密封在刚受到外界激励时膜厚突变相对严重,动态追随性较差;在轴向激励频率较低且挠性环质量较小时,静环挠性安装干气密封相比动环挠性安装干气密封表现出更好的动态追随性;在三种密封环挠性安装形式中,两环均挠性安装干气密封动态追随性最好,且具有绝对优势.  相似文献   

16.
The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 × 106 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m2). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce a strong variation in casing boundary layer properties in the region measured. The casing static pressure measurements follow trends that can be expected from the blade loading distribution, with maximum values immediately upstream of the rotor inlet plane, and then a decreasing trend with axial position as the flow is turned and accelerated in the relative frame of reference. The time-mean static pressure measurements on the casing wall also reveal distinct circumferential variations that are small in comparison to the large pressure gradient in the axial direction.  相似文献   

17.
The study deals with a rotor–stator contact inducing vibration in rotating machinery. A numerical rotor–stator system, including a non-linear bearing with Hertz contact and clearance is considered. To determine the non-linear responses of this system, non-linear dynamic equations can be integrated numerically. However, this procedure is both time consuming and costly to perform. The aim of this Note is to apply the Alternate Frequency/Time Method and the ‘path following continuation’ in order to obtain the non-linear responses to this problem. Then the orbits of rotor and stator responses at various speeds are investigated. To cite this article: J.-J. Sinou, F. Thouverez, C. R. Mecanique 332 (2004).  相似文献   

18.
Coupled laminar natural convection with radiation in air-filled square enclosure heated from below and cooled from above is studied numerically for a wide variety of radiative boundary conditions at the sidewalls. A numerical model based on the finite difference method was used for the solution of mass, momentum and energy equations. The surface-to-surface method was used to calculate the radiative heat transfer. Simulations were performed for two values of the emissivities of the active and insulated walls (ɛ1=0.05 or 0.85, ɛ2=0.05 or 0.85) and Rayleigh numbers ranging from 103 to 2.3×106 . The influence of those parameters on the flow and temperature patterns and heat transfer rates are analyzed and discussed for different steady-state solutions. The existing ranges of these solutions are reported for the four different cases considered. It is founded that, for a fixed Ra, the global heat transfer across the enclosure depends only on the magnitude of the emissivity of the active walls. The oscillatory behavior, characterizing the unsteady-state solutions during the transitions from bicellular flows to the unicellular flow are observed and discussed.  相似文献   

19.
The paper considers the flow of a power-law fluid past a vertical stretching sheet. Effects of variable thermal conductivity and non-uniform heat source/sink on the heat transfer are addressed. The thermal conductivity is assumed to vary linearly with temperature. Similarity transformation is used to convert the governing partial differential equations into a set of coupled, non-linear ordinary differential equations. Two different types of boundary heating are considered, namely Prescribed power-law Surface Temperature (PST) and Prescribed power-law Heat Flux (PHF). Shooting method is used to obtain the numerical solution for the resulting boundary value problems. The effects of Chandrasekhar number, Grashof number, Prandtl number, non-uniform heat source/sink parameters, wall temperature parameter and variable thermal conductivity parameter on the dynamics are shown graphically in several plots. The skin friction and heat transfer coefficients are tabulated for a range of values of the parameters. Present study reveals that in a gravity affected flow buoyancy effect has a significant say in the control of flow and heat transfer.  相似文献   

20.
In this paper, the Riccati transfer matrix method and the component theory of forward and backward whirls are used to the eigenproblem of damped free whirling vibration of a flexible rotor with arbitrarily distributed mass on isotropic or anisotropic supports, with the gyroscopic effect taken into account to find out its critical speeds and corresponding vibrational shape functions. The generalized damped mode theory is developed and extended, which is employed in combination with the Bogoliubov-Mitropolskii asymptotic method to deduce two sets of first order differential equations to calculate the transient response of the rotor with limited power supply passing through its critical speeds in forward whirl and backward whirl respectively. The coupling phenomenon of the rotor through two neighboring critical speeds is also analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号