首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M. M. Rahman 《Meccanica》2011,46(5):1127-1143
This paper presents heat transfer process in a two-dimensional steady hydromagnetic convective flow of an electrically conducting fluid over a flat plate with partial slip at the surface of the boundary subjected to the convective surface heat flux at the boundary. The analysis accounts for both temperature-dependent viscosity and temperature dependent thermal conductivity. The local similarity equations are derived and solved numerically using the Nachtsheim-Swigert iteration procedure. Results for the dimensionless velocity, temperature and ambient Prandtl number within the boundary layer are displayed graphically delineating the effect of various parameters characterizing the flow. The results show that momentum boundary layer thickness significantly depends on the surface convection parameter, Hartmann number and on the sign of the variable viscosity parameter. The results also show that plate surface temperature is higher when there is no slip at the plate compared to its presence. For both slip and no-slip cases surface temperature of the plate can be controlled by controlling the strength of the applied magnetic field. In modelling the thermal boundary layer flow with variable viscosity and variable thermal conductivity, the Prandtl number must be treated as a variable irrespective of flow conditions whether there is slip or no-slip at the boundary to obtain realistic results.  相似文献   

2.
 A generalized thermal boundary condition is derived for the hyperbolic heat conduction equation to include all thermal effects of a thin layer, whether solid-skin or fluid film, moving or stationary, in perfect or imperfect thermal contact with an adjacent domain. The thin layer thermal effects include, among others, thermal capacity of the layer, thermal diffusion, enthalpy flow, viscous dissipation within the layer and convective losses from the layer. Six different kinds of thermal boundary conditions can be obtained as special cases of the generalized boundary condition. The importance of the generalized boundary condition is demonstrated comprehensively in an example. The effects of different geometrical and thermophysical properties on the validity of the generalized thermal boundary condition are investigated. Received on 23 May 2001 / Published online: 29 November 2001  相似文献   

3.
A mathematical model is presented for analyzing the boundary layer forced convective flow and heat transfer of an incompressible fluid past a plate embedded in a Darcy-Forchheimer porous medium. Thermal radiation term is considered in the energy equation. The similarity solutions for the problem are obtained and the reduced nonlinear ordinary differential equations are solved numerically. It is noticed that the boundary layer decreases with an increase in the value of inertial parameter and in this case the temperature profile is found to decrease smoothly within the boundary layer. In case of porous plate, fluid velocity increases whereas non-dimensional temperature decreases for increasing values of suction parameter. The rate of heat transfer increases with the increasing values of Prandtl number. The effect of thermal radiation on temperature field is also analyzed.  相似文献   

4.
 A generalized thermal boundary condition is derived to include all thermal effects of a thin layer which is in thermal contact with an adjacent domain. The thin layer may be a stationary or moving solid-skin or fluid-film. The included thermal effects of the thin layer are the thermal capacity of the layer, thermal diffusion, enthalpy flow, viscous dissipation within the layer, convective losses from the layer, and other effects. Six different kinds of thermal boundary conditions can be obtained as special cases of the generalized boundary condition. The generalized boundary condition is given for perfect and imperfect thermal contact between the thin layer and its adjacent domain. The importance of the generalized boundary condition is demonstrated in an example. Received on 23 December 1996  相似文献   

5.
Heat transfer analysis has been presented for the boundary layer forced convective flow of an incompressible fluid past a plate embedded in a porous medium. The similarity solutions for the problem are obtained and the reduced nonlinear ordinary differential equations are solved numerically. In case of porous plate, fluid velocity increases for increasing values of suction parameter whereas due to injection, fluid velocity is noticed to decrease. The non-dimensional temperature increases with the increasing values of injection parameter. A novel result of this investigation is that the flow separation occurred due to suction/injection may be controlled by increasing the permeability parameter of the medium. The effect of thermal radiation on temperature field is also analyzed.  相似文献   

6.
Results of a numerical study of unsteady radiative-convective heat transfer in a boundary layer on a thermally thin permeable plate in the presence of intense radiation heating from outside are reported. The conjugate formulation of the problem takes into account the thermal interaction between the plate and an external gas flow. We consider a turbulent flow of an emitting-absorbing medium with the selective character of absorption. Calculation results are analyzed with a view for clarifying the influence of the governing parameters, namely, the relative temperature of an external radiation source, the Stark number, and the injection parameter. The possibility of inversion of a convective heat flux on the plate under the conditions of high-level external radiation is found. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirisk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 5, pp. 126–133, September–October, 1998.  相似文献   

7.
The thermal radiation effect on a steady mixed convective flow with heat transfer of a nonlinear (non-Newtonian) Williamson fluid past an exponentially shrinking porous sheet with a convective boundary condition is investigated numerically. In this study, both an assisting flow and an opposing flow are considered. The governing equations are converted into nonlinear ordinary differential equations by using a suitable transformation. A numerical solution of the problem is obtained by using the Matlab software package for different values of the governing parameters. The results show that dual nonsimilar solutions exist for the opposing flow, whereas the solution for the assisting flow is unique. It is also observed that the dual nonsimilar solutions exist only if a certain amount of mass suction is applied through the porous sheet, which depends on the Williamson parameter, convective parameter, and radiation parameter.  相似文献   

8.
The effects of temperature-dependent density, viscosity and thermal conductivity on the free convective steady laminar boundary layer flow by the presence of radiation for large temperature differences, are studied. The fluid density and the thermal conductivity are assumed to vary linearly with temperature. The fluid viscosity is assumed to vary as a reciprocal of a linear function of temperature. The usual Boussinesq approximation is neglected due to the large temperature difference between the plate and the fluid. The nonlinear boundary layer equations, governing the problem under consideration, are solved numerically by applying an efficient numerical technique based on the shooting method. The effects of the density/temperature parameter n, the thermal conductivity parameter , the viscosity/temperature parameter r and the radiation parameter F are examined on the velocity and temperature fields as well as the coefficient of heat flux and the shearing stress at the plate.  相似文献   

9.
The influence of partial slip, thermal radiation and temperature dependent fluid properties on the hydro-magnetic fluid flow and heat transfer over a flat plate with convective surface heat flux at the boundary and non-uniform heat source/sink is studied. The transverse magnetic field is assumed as a function of the distance from the origin. Also it is assumed that the fluid viscosity and the thermal conductivity vary as an inverse function and linear function of temperature respectively. Using the similarity transformation, the governing system of non-linear partial differential equations are transformed into similarity non-linear ordinary differential equations and are solved numerically using symbolic software MATHEMATICA 7.0. The numerical values obtained within the boundary layer for the dimensionless velocity, temperature, skin friction coefficient and the Nusselt number are presented through graphs and tables for several sets of values of the parameters. The effects of various physical parameters on the flow and heat transfer characteristics are discussed from the physical point of view.  相似文献   

10.
The problem of natural convective heat transfer for a non-Newtonian fluid from an impermeable vertical plate embedded in a fluid-saturated porous medium has been analyzed. Non-Darcian, radiative and thermal dispersion effects have been considered in the present analysis. The governing boundary layer equations and boundary conditions are cast into a dimensionless form and simplified by using a similarity transformation. The resulting system of equations is solved by using a double shooting Runge–Kutta method. The effect of viscosity index n, the conduction–radiation parameter R, the non-Darcy parameter Gr*, the thermal dispersion parameter Ds and the suction/injection parameter fw on the fluid velocities, temperatures and the local Nusselt number are discussed.  相似文献   

11.
Experiments have been conducted in a low speed horizontal wind tunnel to study the interaction of radiation and conduction on mixed convective heat transfer from an upward facing horizontal flat plate in air. Differential interferometer has been used to measure local convective heat fluxes. It has been observed that interaction between surface radiation and convection is significant for a low thermal conductivity plate material. On the basis of the previous and current studies, it can be stated that the multi-mode interaction problem is an outcome of the nature of convective boundary layer. The interaction between different modes of heat transfer would remain similar irrespective of the nature of convection (free/mixed or forced).  相似文献   

12.
Moving boundary value problem in non-Newtonian fluid is considered. Exact analytical solution for the flow of second-grade fluid for a rigid moving plate oscillating in its own plane, is obtained. The Doppler effect has been observed due to the motion of the plate. The shearing stress on the plate is also calculated. It is concluded that the solutions for stationary porous boundaries can be obtained from the solutions of moving rigid boundaries.  相似文献   

13.
The momentum and heat transfer characteristics associated with the boundary layer on a continuous moving flat surface in a non-Darcian fluid have been investigated exploiting a local similarity solution procedure. The full boundary layer equations, which describe the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables, deduced from a scale analysis on the momentum and energy conservation equations. Details are provided for the effects of convective inertia and porous inertia on the velocity and temperature profiles. The resulting friction and heat transfer characteristics are found to be substantially different from those of forces convection over a stationary flat plate. Furthermore, useful asymptotic expressions for the local Nusselt number are presented in consideration of possible physical limiting conditions.  相似文献   

14.
The problem of a general incompressible viscous fluid flow past a flat plate with heat transfer due to forced convection is considered in this paper. The synthetic method developed by Seth is applied to the Navier-Stokes equations and the equation of energy governing the flow to obtain the dynamic and thermal boundary layer solutions as asymptotic limits of an extended field. As a result, new formulas are derived for both the dynamic and thermal boundary layer thicknesses. Also, algorithms for estimating all the parameters involved in the analysis are provided and boundary layer functions based on the new solutions are determined.  相似文献   

15.
A conjugation problem for radiative–convective heat transfer in a turbulent flow of a high–temperature gas—particle medium around a thermally thin plate is considered. The plate experiences intense heating from an outside source that emits radiation in a restricted spectral range. Unsteady temperature fields and heat–flux distributions along the plate are calculated. The results permit prediction of the effect of the type and concentration of particles on the dynamics of the thermal state of both the medium in the boundary layer and the plate itself under conditions of its outside heating by a high–temperature source of radiation.  相似文献   

16.
The paper presents an investigation of the influence of thermal radiation and viscous dissipation on the mixed convective flow due to a vertical plate immersed in a non-Darcy porous medium saturated with a Newtonian fluid. The physical properties of the fluid are assumed to be constant. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing partial differential equations are transformed into a system of ordinary differential equations and solved numerically using a shooting method. The results are analyzed for the effects of various physical parameters such as viscous dissipation, thermal radiation, mixed convection parameters, and the modified Reynolds number on dynamics. The heat transfer coefficient is also tabulated for different values of the physical parameters.  相似文献   

17.
The unsteady boundary layer over a semi-infinite flat plate was investigated in this paper. The flow involves the unsteady flow over a flat plate with leading edge accretion or ablation. The momentum boundary layer was further analyzed and it was shown that the leading edge ablation had a similar effect to the wall mass injection or upstream wall movement making the fluid blown away from the wall. The thermal boundary layer of the same flow was also studied. Results show that the leading edge accretion or ablation can greatly change the fluid motion and the heat transfer characteristics.  相似文献   

18.
The effect of an anisotropic permeability on thermal boundary layer flow in porous media is studied. The convective flow is induced by a vertical, uniformly heated surface embedded in a fluid-saturated medium. A leading-order boundary layer theory is presented. It is shown that the thickness of the resulting boundary layer flow is different from that obtained in an isotropic porous medium. In general, an anisotropic permeability induces a fluid drift in the spanwise direction, the strength of which depends on the precise nature of the anisotropy. Conditions are found which determine whether or not the boundary layer flow is three-dimensional.  相似文献   

19.
By means of a double mirror interferometry a two-dimensional temperature distribution measurement in convective thermal boundary layers is presented. When the cold air flows along a hot plate model, the interferometric fringe inside the boundary layer will bend. According to the displacement of the fringe and the relation between temperature and index of refraction, a two-dimensional temperature profile is obtained. All is accomplished by optical device with the help of micro-computer without any contact with the flow field. The project supported by the National Natural Science Foundation of China  相似文献   

20.
The effects of thermal radiation and thermal buoyancy on the steady, laminar boundary layer flow over a horizontal plate is investigated. The plate temperature is assumed to be inversely proportional to the square root of the distance from the leading edge. The set of similarity equations is solved numerically, and the solutions are given for some values of the radiation and buoyancy parameters for Prandtl number unity. It is found that dual solutions exist for negative values of the buoyancy parameter, up to certain critical values. Beyond these values, the solution does no longer exist. Moreover, it is found that there is no local heat transfer at the surface except in the singular point at the leading edge. The radiation parameter is found to increase the local Stanton number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号