首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
商效瑀  郑山锁  徐强 《实验力学》2015,30(6):810-818
本文报导了对冻融循环作用下96个再生混凝土砖砌体抗剪试件进行的沿通缝抗剪试验。研究涉及冻融循环对再生混凝土砖砌体抗剪力学性能的影响,对比分析不同胶结材料试件的破坏形态及其抗剪强度,揭示冻融损伤对再生混凝土砖砌体抗剪强度的影响规律,并从微观角度探讨砂浆孔隙变化对砖砌体抗剪承载力的影响,建立再生混凝土砖砌体抗剪强度冻融损伤衰减模型。结果表明:砖砌体抗剪强度受冻融环境影响非常明显,其抗剪强度随冻融循环次数的增加而降低,降低的速度呈现出先慢后快的趋势;粉煤灰的加入有助于改善冻融环境下砖砌体的抗剪能力;对于石灰砂浆抗剪试件,初期的抗剪能力及冻融后的抗剪能力均下降;建立了考虑冻融损伤影响的砖砌体抗剪强度衰减模型,试验数据与计算结果吻合较好。  相似文献   

2.
砖墙在爆炸冲击震动作用下的动力反应非常复杂,本构关系很难精确建立。本文阐述了砖墙几种常用的有限元模拟方法,分析各种方法的优缺点,确定采用一种砖块和砂浆分开的精细化建模的三维砖墙有限元模型;通过LS-DYNA软件,得到砖墙在水平爆炸冲击震动荷载下的破坏过程,计算结果与实验现象很好。研究表明:该种分析模型综合考虑了砖块和砂浆之间复杂的相互作用,并且对砂浆层进行了单独建模,保证了砖墙在数值模拟上的真实性和正确性,因此可以准确地模拟出实验中砖块之间砂浆层的损伤积累破坏。  相似文献   

3.
A linear viscous model for evaluating the stresses and strains produced in masonry structures over time is presented. The model is based on rigorous homogenization procedures and the following two assumptions: that the structure is composed of either rigid or elastic blocks, and that the mortar is viscoelastic. The hypothesis of rigid block is particularly suitable for historical masonry, in which stone blocks may be assumed as rigid bodies, while the hypothesis of elastic blocks may be assumed for newly constructed brickwork structures. The hypothesis of viscoelastic mortar is based on the observation that non-linear phenomena may be concentrated in mortar joints. Under these assumptions, constitutive homogenized viscous functions are obtained in an analytical form.Some meaningful cases are discussed: masonry columns subject to minor and major eccentricity, and a masonry panel subject to both horizontal and vertical loads. The major eccentricity case is analysed taking into account both the effect of viscosity and the no-tension hypothesis, whereas the bi-dimensional loading case is analysed to verify the sensitivity of masonry behaviour to viscous function. In the masonry wall considered, the principal stresses are both of compression, and the no-tension assumption may therefore be discounted.  相似文献   

4.
贝壳珍珠层是一种具有高强度和高韧性的天然材料,这种优异的性能主要来源于多尺度、多层级的“砖泥”结构。本文受贝壳特殊结构的启发,构建了仿贝壳砖泥结构的有限元模型,并进行了爆炸实验。通过实验发现:在爆炸冲量为0.047 N·s时,试件发生灾难性破坏,使得中心处发生掉落,且伴随着试件夹持端的剪切破坏,与数值模拟结果具有良好的一致性。在实验基础上,对仿贝壳砖泥结构在爆炸载荷下的动态响应进行了数值模拟。研究发现,在爆炸载荷下仿贝壳砖泥结构会产生五种不同的破坏模式,包括:Ⅰ,结构整体无损伤;Ⅱ,结构前表面无明显破坏,后表面发生破坏;Ⅲ,结构发生掉落型贯穿破坏,夹持端无剪切破坏;Ⅳ,结构发生小块掉落型贯穿破坏,夹持端发生剪切破坏;Ⅴ,结构发生大块掉落型贯穿破坏,夹持端发生剪切破坏。并且给出了不同破坏模式的临界阈值,单层砖泥结构的破坏阈值为0.019 N·s,五层砖泥结构的破坏阈值为0.047 N·s,当冲量超过破坏阈值时,试件发生灾难性破坏。研究分析了堆叠层数对仿生结构的力学响应,在同一冲量下,随着层数的增加,结构的破坏模式发生改变,由贯穿型破坏逐渐变为仅发生一定塑性变形。随着层数增加,结构的损伤阈值增加。最后提出仿贝壳砖泥结构的增韧机理主要有裂纹偏转和微裂纹。  相似文献   

5.
Finite element analyses of brick masonry subjected to in-plane concentrated static and dynamic loads are carried out to study crack initiation and propagation during the failure process of unreinforced masonry walls. The numerical model is firstly validated by the experimental tests by using the same materials parameters and loading conditions. Then, the static and dynamic concentrated loads are applied to the mortar joints and brick, respectively, and numerical simulations are used to compare the fracture characteristics for these loads. In addition, a comparison of fracture mechanisms for the concentrated loads on the mortar joint and brick is also given. Finally, the effect of dynamic pressure (Pmax) on the failure mechanism of brick masonry is considered.  相似文献   

6.
This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a function of constituent properties, which can be used to calculate the effective properties of the composite, including elastic modulus, strength and work-to-failure. Regime maps are presented which indicate critical stresses for failure of the bricks and mortar as a function of constituent properties and brick architecture. The solution illustrates trade-offs between elastic modulus, strength and dissipated work that are a result of transitions between various failure mechanisms associated with brick rupture and rupture of the interfaces. Detailed scaling relationships are presented with the goal of providing material developers with a straightforward means to identify synthesis targets that balance competing mechanical behaviors and optimize material response. Ashby maps are presented to compare potential brick and mortar composites with existing materials, and identify future directions for material development.  相似文献   

7.
A homogenization model for periodic masonry structures reinforced with continuous FRP grids is presented. Starting from the observation that a continuous grid preserves the periodicity of the internal masonry layer, rigid-plastic homogenization is applied directly on a multi-layer heterogeneous representative element of volume (REV) constituted by bricks, finite thickness mortar joints and external FRP grids. In particular, reinforced masonry homogenized failure surfaces are obtained by means of a compatible identification procedure, where each brick is supposed interacting with its six neighbors by means of finite thickness mortar joints and the FRP grid is applied on the external surfaces of the REV. In the framework of the kinematic theorem of limit analysis, a simple constrained minimization problem is obtained on the unit cell, suitable to estimate – with a very limited computational effort – reinforced masonry homogenized failure surfaces.A FE strategy is adopted at a cell level, modeling joints and bricks with six-noded wedge shaped elements and the FRP grid through rigid infinitely resistant truss elements connected node by node with bricks and mortar. A possible jump of velocities is assumed at the interfaces between contiguous wedge and truss elements, where plastic dissipation occurs. For mortar and bricks interfaces, a frictional behavior with possible limited tensile and compressive strength is assumed, whereas for FRP bars some formulas available in the literature are adopted to reproduce the delamination of the truss from the support.Two meaningful structural examples are considered to show the capabilities of the procedure proposed, namely a reinforced masonry deep beam (0°/90° continuous reinforcement) and a masonry beam in simple flexion for which experimental data are available. Good agreement is found between present model and alternative numerical approaches.  相似文献   

8.
This paper investigates the parameter estimation problem for brick masonry models. An identification procedure is proposed in which the uncertainties of known parameters and/or errors of measurements are its elements of distinction. The minimization process of the discrepancies between experimental data and theoretical measurements takes place by means of a first order iterative method. The identification procedure is applied to two different problems: the calibration of an interface model for brick–mortar joint in its functional form through monotonic experimental tests; to evaluate the unknown parameters of a continuum model for brick masonry walls in its non-holonomic form by means of in-plane cyclic shear–compression test of masonry panels. The general framework of the non-linear estimate methodology, the parameter identification problems and the numerical results are presented.  相似文献   

9.
The proposed study aims to derive an imperfect interface model which couples finite strain and damaging. The governing equations are obtained via an asymptotic approach within the finite strain theory. Theoretical findings have been numerically validated within an original application to brick/mortar interfaces in masonry walls in shear loading conditions.  相似文献   

10.
The rheological behavior of setting heterogeneous materials is studied from a theoretical approach by means of the homogenization technique of periodic medium. These materials considered as suspensions of gas bubbles at finite concentration in a viscoelastic matrix with low compressibility, present the macroscopic behavior of a compressible viscoelastic medium. The shear and volume macroscopic moduli are of the same order of magnitude and directly proportional to that of the fluid. The effective compressibility of the gas (out of thermal equilibrium) is added to these fluid contributions.  相似文献   

11.
The results of experimental investigation on the mechanical properties of clay brick masonry after high temperature exposition are here presented. The adopted physical model of masonry means to represent both new and old load bearing walls, so to get useful and applicable results. Uniaxial and diagonal compressive tests were carried on masonry samples exposed to 300 and 600°C. Samples of the component materials were tested in compression as well, and the elastic moduli of bricks and mortar were also measured. The results allow to evaluate the levels of residual strength and stiffness of all tested materials after exposure to high temperatures. Finally, property-temperature laws of mechanical decay for masonry, brick and mortar after high temperature exposition are here proposed and discussed.  相似文献   

12.
Summary  Constitutive equations are derived for the viscoelastic and viscoplastic behavior of amorphous glassy polymers at isothermal loading with small strains. The model is based on the trapping concept: a disordered medium is treated as an ensemble of plastic flow units (with the characteristic size of micrometers), which, in turn, consist of a number of cooperative rearranging regions (with the characteristic length of nanometers). The viscoelastic response is described by rearrangement of relaxing regions, whereas the viscoplastic behavior is modeled as irreversible deformation of plastic units. Adjustable parameters are found by fitting observations for aromatic polyesters, nylon-66, polycarbonate block copolymers and an epoxy glass. Fair agreement is demonstrated between experimental data and results of numerical simulation. Received 17 November 1999; accepted for publication 23 March 2000  相似文献   

13.
An important failure mode of the masonry walls is the shearing process in joint mortar. In order to understand better this phenomenon, an experimental study is carried out on half brick couplet specimen. Load/Unload shear tests are performed to assess the type of the shear behaviour of the joint mortar. The cohesion and the internal friction angle are then derived from linear regression while assuming Mohr–Coulomb criterion. In particular, the influence of holes on the joint behaviour is studied by comparing results obtained with both solid and hollow bricks. In both cases, the experimental results show that there is not any stiffness degradation even in the softening regime. Actually, the shear modulus remains constant. Hence, the joint behaviour is considered to be elastoplastic, independently on the brick type. However, it seems that the presence of holes increases the stiffness but does not affect the internal friction angle of the joint mortar.  相似文献   

14.
In order to study the adhesion mechanism of a viscoelastic thin-film on a substrate, peeling experiment of a viscoelastic polyvinylchloride (PVC) thin-film on a rigid substrate (glass) is carried out. The effects of peeling rate, peeling angle, film thickness, surface roughness and the interfacial adhesive on the peel-off force are considered. It is found that both the viscoelastic properties of the film and the interfacial adhesive contribute to the rate-dependent peel-off force. For a fixed peeling rate, the peel-off force decreases with the increasing peeling angle. Increasing film thickness or substrate roughness leads to an increase of the peel-off force. Viscoelastic energy release rate in the present experiment can be further predicted by adopting a recently published theoretical model. It is shown that the energy release rate increases with the increase of peeling rates or peeling angles. The results in the present paper should be helpful for understanding the adhesion mechanism of a viscoelastic thin-film.  相似文献   

15.
16.
本文采用块体介质力学模型试验方法,研究了地下洞室群围岩的受力特点,破坏形态和破坏机理;洞室围岩超载能力和开挖步序对围岩稳定性的影响;砂浆锚杆和预应力锚索的不同加固效果;验证喷锚支护设计方案的合理性。  相似文献   

17.
The idea behind this paper is to present a numerical procedure for the analysis of masonry walls, based on the application of an asymptotic homogenization method. In this paper, a masonry wall, obtained by the regular repetition of blocks between which mortar is laid, is modelled as a periodic body in the two plane directions. The local problem is formulated for a base cell tied to the geometry of the body and in a position to generate it entirely through some law of its internal composition. Two homogenized models are formulated: the first envisages that both phases, block and mortar, behave in linear elastic fashion; the other envisages that the mortar behaves in linear elastic fashion, while the block is infinitely stiff. The two models are described theoretically and the construction of the model according to the characteristic module is numerically defined. In the case where the infinitely stiff (rigid) block is assumed, not only is the formulation of the model made extremely simple, but any numerical problems tied to great differences in the numerical values characterizing the constitutive modules of the two phases are overcome. In this regard, the domain of applicability of this model is sought both by comparing the homogenized constitutive functions, while varying the ratios of the elastic coefficients of the mortar and the block, with the rigid solution, and by analysing the structural behaviour that derives from the application, or not, of the rigid model, this being done for two sample problems. It should be underlined that the rigid-block model furnishes qualitatively sound structural answers even for very low ratios between the elastic moduli of the two phases composing the wall, and furnishes answers that are quantitatively sound as well for ratios of the order of 30:1, a realistic ratio in the case of ancient walls. The results obtained can be extended to heterogeneous materials in general, that is, to many of the innovatory materials, the composites, where the constituent phases have stiffness characteristics that are rather different and the condition of regularity of alternation of the phases is adequately plausible.  相似文献   

18.
贝壳、牡蛎等天然材料因其轻质高强的力学特性在材料设计等领域受到了广泛的关注,但由于材料本身结构的复杂性,对其力学行为的研究十分困难。近年来,分数阶模型在研究材料的力学特性上取得了成功,相比传统模型,分数阶模型可以更好地表征复杂介质的应力或应变与时间的关系。因此,本文从波传播理论出发,以分数阶模型作为材料本构,得到了复杂介质的波传播控制方程。通过Laplace变换得到了控制方程的解析解,并通过Laplace数值逆变换分析了波的衰减对分数阶模型中参量的敏感性,讨论了不同于材料弹性、黏性的材料“惯性”特性。接着,基于解析解和多种实验测试信号,给出了得到分数阶模型参数的拟合式子。以牡蛎材料作为研究对象,利用CO2脉冲激光器进行小试样的冲击加载、应用两点激光干涉测速系统(laser interferometer velocimetry system, VISAR)对表面粒子的速度进行测量,得到了4种密度下不同厚度的牡蛎壳试样的粒子速度时程曲线,再结合上述理论方法分析得到了牡蛎壳试样的Abel模型和分数阶Maxwell模型的参数,模型参数反映了牡蛎壳试样的细微观结构特征。结果...  相似文献   

19.
Stiff ceramic platelets (or bricks) that are aligned and bonded to a second ductile phase with low volume fraction (mortar) are a promising pathway to produce stiff, high-toughness composites. For certain ranges of constituent properties, including those of some synthetic analogs to nacre, one can demonstrate that the deformation is dominated by relative brick motions. This paper describes simulations of fracture that explicitly track the motions of individual rigid bricks in an idealized microstructure; cohesive tractions acting between the bricks introduce elastic, plastic and rupture behaviors. Results are presented for the stresses and damage near macroscopic cracks with different brick orientations relative to the loading orientation. The anisotropic macroscopic initiation toughness is computed for small-scale yielding conditions and is shown to be independent of specimen geometry and loading configuration. The results are shown to be in agreement with previously published experiments on synthetic nacre.  相似文献   

20.
A simplified kinematic procedure at a cell level is proposed to obtain in-plane elastic moduli and macroscopic masonry strength domains in the case of herringbone masonry. The model is constituted by two central bricks interacting with their neighbors by means of either elastic or rigid-plastic interfaces with friction, representing mortar joints. The herringbone pattern is geometrically described and the internal law of composition of the periodic cell is defined.A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in-plane loads. Suitable internal macroscopic actions are applied on the Representative Element of Volume (REV) and the power expended within the 3D bricks assemblage is equated to that expended in the macroscopic 2D Cauchy continuum. The elastic and limit analysis problem at a cell level are solved by means of a quadratic and linear programming approach, respectively.To assess elastic results, a standard FEM homogenization is also performed and a sensitivity analysis regarding two different orientations of the pattern, the thickness of the mortar joints and the ratio between block and mortar Young moduli is conducted. In this way, the reliability of the numerical model is critically evaluated under service loads.When dealing with the limit analysis approach, several computations are performed investigating the role played by (1) the direction of the load with respect to herringbone bond orientation, (2) masonry texture and (3) mechanical properties adopted for joints.At a structural level, a FE homogenized limit analysis is performed on a masonry dome built in herringbone bond. In order to assess limit analysis results, additional non-linear FE analyses are performed, including a full 3D numerical expensive heterogeneous approach and models where masonry is substituted with an equivalent macroscopic material with orthotropic behavior and possible softening. Reliable predictions of collapse loads and failure mechanisms are obtained, meaning that the approach proposed may be used by practitioners for a fast evaluation of the effectiveness of herringbone bond orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号