首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsteady MHD boundary layer flow of a micropolar fluid near the forward stagnation point of a two dimensional plane surface is investigated by using similarity transformations. The transformed nonlinear differential equations are solved by an analytic method, namely homotopy analysis method (HAM). The solution is valid for all values of time. The effect of MHD and porous medium, non dimensional velocity and the microrotation are presented graphically and discussed. The coefficient of skin friction is also presented graphically.  相似文献   

2.
The effect of MHD on steady two-dimensional laminar mixed flow about a vertical porous surface is numerically analyzed. Also the effects of radiation and heat generation and absorption are considered. A power law variation of temperature along the vertical wall is assumed. The nonlinear boundary-layer equations were transformed and the resulting differential equations were solved by an implicit finite difference scheme (Keller box method). Numerical results for the velocity distribution and the temperature distribution are presented for various values of Prandtl number Pr, magnetic parameter, porous medium parameter and internal heat generation or absorption coefficient. Further validation with previous works is carried out.  相似文献   

3.
The homogenisation method with multiple scale expansions is used to investigate the slow and isothermal flow of generalised Newtonian fluids through anisotropic porous media. From this upscaling it is shown that the first-order macroscopic pressure gradient can be defined as the gradient of a macroscopic viscous dissipation potential, with respect to the first-order volume averaged fluid velocity. The macroscopic dissipation potential is the volume-averaged of local dissipation potential. Using this property, guidelines are proposed to build macroscopic tensorial permeation laws within the framework defined by the theory of anisotropic tensor functions and by using macroscopic isodissipation surfaces. A quantitative numerical study is then performed on a 3D fibrous medium and with a Carreau–Yasuda fluid in order to illustrate the theoretical results deduced from the upscaling.  相似文献   

4.
An analysis is presented with magnetohydrodynamics natural convective flow of a viscous Newtonian fluid saturated porous medium in a vertical slot. The flow in the porous media has been modeled using the Brinkman model. The fully-developed two-dimensional flow from capped to open ends is considered for which a continuum of solutions is obtained. The influence of pertinent parameters on the flow is delineated and appropriate conclusions are drawn. The asymptotic behaviour and the volume flux are analyzed and incorporated graphically for the three-parameter family of solution.  相似文献   

5.
Taking Hall currents into account the unsteady magnetohydrodynamical flow through a porous medium bounded by an infinite vertical limiting surface in a rotating frame of reference is theoretically investigated when a strong magnetic field is imposed in a plane which makes an angle a with the normal to the plate. The influence of Hall currents on the velocity and temperature distribution are shown graphically for various values of .
Hall-Effekte in oszillierender magnetohydrodynamischer Strömung durch ein poröses Medium in einer rotierenden Flüssigkeit
Zusammenfassung Bei der Betrachtung von Hallströmen wird die unstetige magnetohydrodynamische Strömung durch ein poröses Medium, begrenzt durch eine unendlich lange senkrechte Fläche in einem rotierenden Rahmen, für den Fall theoretisch untersucht, daß ein starkes magnetisches Feld in einer Ebene, die den Winkel a mit der normalen auf die Fläche einschließt, angelegt wird. Der Einfluß der Hallströme auf die Geschwindigkeit und die Temperaturverteilung wird für verschiedene Werte von graphisch dargestellt. Wärme- und Stofflibertragung 23 (1988)
  相似文献   

6.
7.
Two-dimensional magnetohydrodynamic (MHD) boundary layer flow of an upper-convected Maxwell fluid is investigated in a channel. The walls of the channel are taken as porous. Using the similarity transformations and boundary layer approximations, the nonlinear partial differential equations are reduced to an ordinary differential equation. The developed nonlinear equation is solved analytically using the homotopy analysis method. An expression for the analytic solution is derived in the form of a series. The convergence of the obtained series is shown. The effects of the Reynolds number Re, Deborah number De and Hartman number M are shown through graphs and discussed for both the suction and injection cases.  相似文献   

8.
MHD Couette flow in a channel with non-conducting walls, partially filled with a porous medium, is investigated in the presence of an inclined magnetic field in a rotating system. It is observed that the MHD flow behaviour in the channel has been influenced significantly by the Coriolis force, the hydromagnetic force with an inclusion of Hall current and the permeability of the porous medium. Effects of the parameters of these forces on the velocity distributions, induced magnetic field distributions and the skin friction have been depicted graphically and discussed.  相似文献   

9.
The present study aims to investigate the salient features of incompressible,hydromagnetic, three-dimensional flow of viscous fluid subject to the oscillatory motion of a disk. The rotating disk is contained in a porous medium. Furthermore, a time-invariant version of the Maxwell-Cattaneo law is implemented in the energy equation. The flow problem is normalized by obtaining similarity variables. The resulting nonlinear system is solved numerically using the successive over-relaxation method. The main results are discussed through graphical representations and tables. It is perceived that the thermal relaxation time parameter decreases the temperature curves and increases the heat transfer rate. The oscillatory curves for the velocity field demonstrate a decreasing tendency with the increasing porosity parameter values. Two-and three-dimensional flow phenomena are also shown through graphical results.  相似文献   

10.
The problem of combined convection from vertical surfaces in a porous medium saturated with a power-law type non-Newtonian fluid is investigated. The transformed conservation laws are solved numerically for the case of variable surface heat flux conditions. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5 to 2.0.  相似文献   

11.
This paper investigates mixed free and forced convection of non-Newtonian fluids from a vertical isothermal plate embedded in a homogenous porous medium. A mathematical model is developed based on the modified Darcy's law and boundary-layer approximations, and the exact similarity solution is obtained as well as an integral solution. These two solutions agree within 3% for aiding flows and 10% for opposing flows. It is found that, non-Newtonian characteristics of fluids have appreciable influences on velocity profiles, temperature distributions and flow regimes.  相似文献   

12.
Pressure losses and velocity distributions were measured for creeping flow through three model fibrous porous media. The three models consisted of square arrays of circular rods with solid volume fractions of 2.5, 5 and 10%. Measurements of flow resistances are in good agreement with theoretical predictions after wall effects are accounted for using Brinkman’s equation. Two-dimensional velocity vector maps were obtained in each array using particle image velocimetry. The velocity distributions are necessary for identifying non-Newtonian effects in flows with viscoelastic fluids.  相似文献   

13.
This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the nonNewtonian behavior, a Maxwell viscoelasticity-based micropolar is considered. Moreover,a porous medium saturates the stretching sheet. A set of similarity variables is introduced to derive the dimensionless ordinary differential equations of velocity, concentration, and temperature profiles. The numerical solution is computed by using the MATLAB bvp4c package. The salient flow features of velocity, concentration, and temperature profiles are described and discussed through various graphs. It is observed that with an increase in the slip parameter, the micro-rotation velocity also increases. The temperature of nanoparticles gets maximum values by varying the viscoelastic parameter and the porosity parameter while an opposite trend is noted for the micro-rotation parameter. The local Nusselt number and the local Sherwood number increase by increasing the viscoelastic parameter, the porosity parameter, and the slip velocity parameter. The graphical computation is performed for a specified range of parameters, such as 0≤M≤2.5, 0 ≤σ_m≤2.5,0≤K_1 ≤1.5, 0.5≤Pr≤3.0, 0≤σ≤1.5, 0.5≤Sc≤2.0, 0.2≤N_b≤0.8, and 0.2≤N_t≤0.8.  相似文献   

14.
We study theoretically and computationally the incompressible, non-conducting, micropolar, biomagnetic (blood) flow and heat transfer through a two-dimensional square porous medium in an (x,y) coordinate system, bound by impermeable walls. The magnetic field acting on the fluid is generated by an electrical current flowing normal to the xy plane, at a distance l beneath the base side of the square. The flow regime is affected by the magnetization B 0 and a linear relation is used to define the relationship between magnetization and magnetic field intensity. The steady governing equations for x-direction translational (linear) momentum, y-direction translational (linear) momentum, angular momentum (micro-rotation) and energy (heat) conservation are presented. The energy equation incorporates a special term designating the thermal power per unit volume due to the magnetocaloric effect. The governing equations are non-dimensionalized into a dimensionless (ξ,η) coordinate system using a set of similarity transformations. The resulting two point boundary value problem is shown to be represented by five dependent non-dimensional variables, f ξ  (velocity), f η (velocity), g (micro-rotation), E (magnetic field intensity) and θ (temperature) with appropriate boundary conditions at the walls. The thermophysical parameters controlling the flow are the micropolar parameter (R), biomagnetic parameter (N H ), Darcy number (Da), Forchheimer (Fs), magnetic field strength parameter (Mn), Eckert number (Ec) and Prandtl number (Pr). Numerical solutions are obtained using the finite element method and also the finite difference method for Ec=2.476×10−6 and Prandtl number Pr=20, which represent realistic biomagnetic hemodynamic and heat transfer scenarios. Temperatures are shown to be considerably increased with Mn values but depressed by a rise in biomagnetic parameter (N H ) and also a rise in micropolarity (R). Translational velocity components are found to decrease substantially with micropolarity (R), a trend consistent with Newtonian blood flows. Micro-rotation values are shown to increase considerably with a rise in R values but are reduced with a rise in biomagnetic parameter (N H ). Both translational velocities are boosted with a rise in Darcy number as is micro-rotation. Forchheimer number is also shown to decrease translational velocities but increase micro-rotation. Excellent agreement is demonstrated between both numerical solutions. The mathematical model finds applications in blood flow control devices, hemodynamics in porous biomaterials and also biomagnetic flows in highly perfused skeletal tissue. Dedicated to Professor Y.C. Fung (1919-), Emeritus Professor of Biomechanics, Bioengineering Department, University of California at San Diego, USA for his seminal contributions to biomechanics and physiological fluid mechanics over four decades and his excellent encouragement to the authors, in particular OAB, with computational biofluid dynamics research.  相似文献   

15.
A general law of nonlinear anisotropic flow through a porous medium is proposed. A corresponding equation for the pressure of the fluid is obtained in velocity hodograph variables. The conditions of ellipticity of this equation are expressed in terms of the dissipative function.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 158–160, September–October, 1980.I thank V. M. Entob for discussing the work.  相似文献   

16.
This work reports on fluid flow in a fluid-saturated porous medium, accounting for the boundary and inertial effects in the momentum equation. The flow is simulated by Brinkman-Forchheimer-extended Darcy formulation (DFB), using MAC (Marker And Cell) and Chorin pressure iteration method. The method is validated by comparison with analytic results. The effect of Reynolds number, Darcy number, porosity and viscosity ratio on velocity is investigated. As a result, it is found that Darcy number has a decisive influence on pressure as well as velocity, and the effect of viscosity ratio on velocity is very strong given the Darcy number. Additional key findings include unreasonable choice of effective viscosity can involve loss of important physical information.  相似文献   

17.
18.
In analyzing the processes of the displacement of oil, in which intensive interphase mass transfer takes place, it is normally assumed that the partial volumes of the components as they mix are additive (Amagat's Law) [1, 2]. Then the equations of motion have an integral, which is the total volume flow rate through the porous medium, and the basic problems of frontal displacement, if there are not too many components in the system, permit an exact analytical study to be made [3–5]. If this assumption is rejected, the total flow becomes variable [3, 6, 7]. It appears that the consequences of this as applied to the processes of the displacement of oil by high pressure gases have not previously been considered. The results of such a study, developing the approach outlined in [4], are given below. The initial multicomponent system is simulated by a three-component one which contains oil (the component being displaced), gas (the neutral or main displacing component), and intermediate hydrocarbon fractions or solvent (the active component). It is shown that instead of the triangular phase diagram (TPD) normally used where the partial volumes of the components are additive, in this case it is convenient to use a special spatial phase diagram (SPD) of the apparent volume concentrations of the components to construct the solutions and to interpret them graphically. The method of constructing the SPD and its main properties are explained. A corresponding graphoanalytical technique is developed for constructing the solutions of the basic problems of frontal displacement which correspond to motions with variable total flow.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 113–120, May–June, 1985.  相似文献   

19.
General expressions for evaluating the asymptotic Nusselt number for a Newtonian flow through a parallel-plate channel with recycle at the ends have been derived. Numerical results with the ratio of thicknesses as a parameter for various recycle ratios are obtained. A regression analysis shows that the results can be expressed by log Nur0.83=0.3589 (log)2 -0.2925 (log) + 0.3348 forR 3, 0.1 0.9; logNu=0.5982(log)2 +0.3755 × 10–2 (log) +0.8342 forR 10–2, 0.1 0.9.
Asymptotische Nusselt-Zahlen für die Newtonsche Strömung durch einen Kanal aus parallelen Platten mit Rückführung
Zusammenfassung In dieser Untersuchung wurden allgemeine Ausdrücke hergeleitet um die asymptotische Nusselt-Zahl für eine Newtonsche Strömung durch einen Kanal aus parallelen Platten mit Rückführung an den Enden berechnen zu können. Es wurden numerische Ergebnisse mit den Dicken-Verhältnissen, als Parameter für verschiedene Rückführungs-verhältnisse, erhalten. Eine Regressionsanalyse zeigt, daß die Ergebnisse wie folgt ausgedrückt werden können: log Nur0,83=0,3589 (log)2 -0,2925 (log) + 0,3348 fürR 3, 0,1 0,9; logNu=0,5982(log)2 +0,3755 × 10–2 (log) + 0,8342 fürR 10–2, 0,1 0,9.

Nomenclature A1 shooting value,d(0)/d - A2 shooting value,d(1)/d - B channel width - Gz Graetz number, UbW2/L - h m logarithmic average convective heat transfer coefficient - h x average local convective heat transfer coefficient - k thermal conductivity - L channel length - Nu average local Nusselt number, 2 hxW/k - Nu m logarithmic average Nusselt number, 2hmW/k - R recycle ratio, reverse volume flow rate divided by input volume flow rate - T temperature of fluid - T m bulk temperature, Eq. (8) - T 0 temperature of feed stream - T s wall temperature - U velocity distribution - U b reference velocity,V/BW - V input volume flow rate - v dimensionless velocity distribution, U/Ub - W channel thickness - x longitudinal coordinate - y transversal coordinate - Z1-z6 functions defined in Eq. (A1) - thermal diffusivity - least squares error, Eq. (A7) - weight, Eqs. (A8), (A9) - dimensionless coordinate,y/W - dimensionless coordinate,x/GzL - function, Eq. (7)  相似文献   

20.
In this paper we have numerically investigated the existence and uniqueness of a vertically flowing fluid passed a model of a thin vertical fin in a saturated porous media. We have assumed the two-dimensional mixed convection from a fin, which is modelled as a fixed, semi-infinite vertical surface, embedded in a fluid-saturated porous media under the boundary-layer approximation. We have taken the temperature, in excess of the constant temperature in the ambient fluid on the fin, to vary as  , where is measured from the leading edge of the plate and λ is a fixed constant. The Rayleigh number is assumed to be large so that the boundary-layer approximation may be made and the fluid velocity at the edge of the boundary-layer is assumed to vary as . The problem then depends on two parameters, namely λ and , the ratio of the Rayleigh to Péclet numbers. It is found that when λ>0 (<0) there are (is) dual (unique) solution(s) when is grater than some negative values of (which depends on λ). When λ<0 there is a range of negative value of (which depends on λ) for which dual solutions exist and for both λ>0 and λ<0 there is a negative value of (which depends on λ) for which there is no solution. Finally, solutions for 0<1 and 1 have been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号