首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this paper, the basic equations of motion, of Gauss and of heat conduction, together with constitutive relations for pyro- and piezoelectric media, are presented. Three thermoelastic theories are considered: classical dynamical coupled theory, the Lord–Shulman theory with one relaxation time and Green and Lindsay theory with two relaxation times. For incident elastic longitudinal, potential electric and thermal waves, referred to as qP, φ-mode and T-mode waves, which impinge upon the interface between two different transversal isotropic media, reflection and refraction coefficients are obtained by solving a set of linear algebraic equations. A case study is investigated: a system formed by two semi-infinite, hexagonal symmetric, pyroelectric–piezoelectric media, namely Cadmium Selenide (CdSe) and Barium Titanate (BaTiO3). Numerical results for the reflection and refraction coefficients are obtained, and their behavior versus the incidence angle is analyzed. The interaction with the interface give rises to different kinds of reflected and refracted waves: (i) two reflected elastic waves in the first medium, one longitudinal (qP-wave) and the other transversal (qSV-wave), and a similar situation for the refracted waves in the second medium; (ii) two reflected potential electric waves and a similar situation for the refracted waves; (iii) two reflected thermal waves and a similar situation for the refracted waves. The amplitudes of the reflected and refracted waves are functions of the incident angle, of the thermal relaxation times and of the media elastic, electric, thermal constants. This study is relevant to signal processing, sound systems, wireless communications, surface acoustic wave devices and military defense equipment.  相似文献   

2.
This paper is devoted to study a problem of reflection and refraction of quasi-longitudinal waves under initial stresses at an interface of two anisotropic piezoelectric media with different properties. One of the two media is aluminum nitride, which is considered the down piezoelectric medium and the above medium is chosen as PZT-5H ceramics. The two piezoelectric media welded are assumed to be anisotropic of a type of a transversely isotropic crystals (hexagonal crystal structure, class 6 mm). The equations of motion and constitutive relations for the piezoelectric media have been written. Suitable boundary conditions are used to obtain the reflection and refraction coefficients. For an incidence of quasi-longitudinal plane waves, four independent-type amplitude ratios of elastic displacement components for plane waves, called quasi-longitudinal (qP) and quasi-shear vertical (qSV) waves, are shown to exist. Also, it is observed that there exist four dependent amplitude ratios of electric potential, which are proportional to the previous four types. Finally, it is found that the coefficients of reflection and refraction are functions of angle of incidence, elastic constants, piezoelectric potential parameters and the initial stresses. Numerical computations and the results obtained are depicted graphically. In the end, a particular case has been reduced from the present study. This investigation is considered important because the initial stresses in such practical problems are inevitable and may result in frequency shift, a change in the velocity of surface waves and controlling the selectivity of a filter compensation of the devices.  相似文献   

3.
In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo–Lord–Shulman theory and (c) Green–Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto–electro–thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary (qP) wave and a quasi-transverse Secondary (qS) wave; and (2) a mainly thermal (qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients.  相似文献   

4.
The paper deals with the phenomenon of reflection of plane elastic waves in a free surface when the medium is initially stressed. It has been shown analytically that the reflected P and SV waves depend on initial stresses present in the medium. The numerical values of reflection coefficients for different initial stresses and the angle of incidence have been calculated by the Computer I.C.L. 1901-A and the results are given in the form of graphs. Many interesting results are found in the paper which are not seen in an initially stress-free medium.  相似文献   

5.
We examine the reflection and transmission phenomena of quasi-longitudinal plane(QP) waves in an AlN-ZnO laminated composite structure. The structure is designed under the influence of the initial stresses in which one carrier piezoelectric semiconductor(PSC) half-space is in welded contact with another PSC half-space.The secular equations in the transversely isotropic PSC material are derived from the general dynamic equation, taking the initial stresses into consideration. It is shown that the incident quasi-longitudinal wave(QP-mode) at the interface generates four types of reflected and transmitted waves, namely, QP wave, quasi-transverse(QSV) wave,electric-acoustic(EA) wave, and carrier plane(CP) wave. The algebraic equations are obtained by imposing the boundary conditions on the common interface of the laminated structure. Reflection and transmission coefficients of waves are obtained by implementing Cramer's rule. Profound impacts of the initial stresses and exterior electric biasing field on the reflection and transmission coefficients of waves are investigated and presented graphically.  相似文献   

6.
The paper deals with the phenomena of reflection and refraction of plane elastic waves at a plane interface between two semi-infinite elastic solid media in contact, when both the media are initially stressed. It has been shown analytically that both reflected and refracted P and SV waves depend on initial stresses present in the media. The numerical values of reflection and refraction coefficients for different initial stresses and the angle of incidence have been calculated by computer and the results are given in the form of graphs. Many results are found in the paper which are not seen in initially stress-free media.  相似文献   

7.
The pressure reflected from a bi-laminated piezoelectric plate has been determined using the Thomson-Haskell matrix method. The plate is composed of a piezoelectric layer with grounded vacuum and an elastic layer in contact with the fluid. An incident plane wave in the fluid medium strikes the plate at different angles. The required electric potential across the piezoelectric layer to cancel the reflection from the fluid/elastic boundary has been determined for the piezoelectric material PZT-5 at various thicknes parameters and incident frequencies. Project supported by the National Natural Science Foundation of China (No. 10172039).  相似文献   

8.
This study is concerned with the reflection and transmission of plane waves at an imperfectly bonded interface between two orthotropic micropolar elastic half-spaces with different elastic and micropolar properties. There exist three types of coupled waves in xy-plane. The reflection and transmission coefficients of quasi-longitudinal (QLD) wave, quasi-coupled transverse microrotational (QCTM) wave and quasi-coupled transverse displacement (QCTD) wave have been derived for different incidence waves and deduced for normal force stiffness, transverse force stiffness, transverse couple stiffness and perfect bonding. The numerical values of modules of the reflection and transmission coefficients are presented graphically with the angle of incidence for orthotropic micropolar medium (MOS) and isotropic micrpolar medium (MIS). Some particular cases of interest have been deduced from the present investigation.  相似文献   

9.
In this paper, the governing relations and equations are derived for nonlocal elastic solid with voids. The propagation of time harmonic plane waves is investigated in an infinite nonlocal elastic solid material with voids. It has been found that three basic waves consisting of two sets of coupled longitudinal waves and one independent transverse wave may travel with distinct speeds. The sets of coupled waves are found to be dispersive, attenuating and influenced by the presence of voids and nonlocality parameters in the medium. The transverse wave is dispersive but non-attenuating, influenced by the nonlocality and independent of void parameters. Furthermore, the transverse wave is found to face critical frequency, while the coupled waves may face critical frequencies conditionally. Beyond each critical frequency, the respective wave is no more a propagating wave. Reflection phenomenon of an incident coupled longitudinal waves from stress-free boundary surface of a nonlocal elastic solid half-space with voids has also been studied. Using appropriate boundary conditions, the formulae for various reflection coefficients and their respective energy ratios are presented. For a particular model, the effects of non-locality and dissipation parameter (\(\tau \)) have been depicted on phase speeds and attenuation coefficients of propagating waves. The effect of nonlocality on reflection coefficients has also been observed and shown graphically.  相似文献   

10.
The effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces are studied in this paper. First, the secular equations in the traverse isotropic piezoelectric half space are derived from the general dynamic equation with initial stress taken into consideration. Then, the interface conditions that displacement, stress, electric potential, and electric displacement are continuous across interface are required to be satisfied by three sets of coupled waves, namely, quasi-longitudinal wave, quasi-transverse wave and the electric–acoustic wave. The algebraic equations resulting from the interface conditions are solved to obtain the amplitude ratio of various waves and furthermore the energy reflection and transmission coefficients of various waves. The numerical results are shown graphically and the effects of initial stress are discussed.  相似文献   

11.
Two-dimensional plane wave propagation in an orthotropic micropolar elastic solid is studied. There exist three types of coupled waves in xy-plane, whose velocities depend upon the angle of propagation and material parameters. A problem on reflection of these plane waves from a stress-free boundary is considered. The reflection coefficients of various reflected waves are computed numerically for a particular model of the solid. The effects of anisotropy upon the velocities and reflection coefficients are depicted graphically for different angles of propagation.  相似文献   

12.
Plane waves in a semi-infinite fluid saturated porous medium   总被引:5,自引:0,他引:5  
The field equations governing the propagation of waves in an incompressible liquid-saturated porous medium are investigated and a general solution is presented. It has been revealed that coupled longitudinal and transverse waves propagate in the porous medium. The propagation of transverse waves in the fluid phase is completely due to the interaction between the solid and fluid phases. The dispersion relationship and attenuation features are discussed. Unlike other investigations, all explicit forms of the arguments are derived. The reflection of the plane harmonic waves at the plane, traction-free boundary, which shows the influence of the dissipation on the velocity, and the attenuation coefficients of the reflected waves is studied. It is of interest that pore pressure is produced in the process of reflection, even in the case of the incidence of transverse waves.  相似文献   

13.
The problem of reflection and transmission of plane waves incident on the contact surface of an elastic solid and an electro-microstretch generalized thermoelastic solid is discussed. It is found that there exist five reflected waves, i.e., longitudinal displacement (LD) wave, thermal (T) wave, longitudinal microstretch (LM) wave and two coupled transverse displacement and microrotational (CD(I) and CD(II)) waves in the electro-microstretch generalized thermoelastic solid, and two transmitted waves, i.e., longitudinal (P) and transverse (SV) waves in the elastic solid. The amplitude ratios of different reflected and transmitted waves are obtained for an imperfect boundary and deduced for normal force stiffness, transverse force stiffness, and perfect bonding. The variations of amplitude ratios with incidence angles have been depicted graphically for the LD wave and the CD(I) wave. It is noticed that the amplitude ratios of reflected and transmitted waves are affected by the stiffness, electric field, stretch, and thermal properties of the media. Some particular interest cases have been deduced from the present investigations.  相似文献   

14.
流体饱和标准线性粘弹性多孔介质中的平面波   总被引:4,自引:1,他引:3  
研究了流体饱和不可压标准线性粘弹性多孔介质中平面波的传播和反射问题.在固相骨架小变形的假定下,得到了粘弹性多孔介质中波动方程的一般解,讨论了弥散关系和波的衰减特性.结果表明:在流体饱和不可压粘弹性多孔介质中,仅存在一个耦合纵波和一个耦合横波,纵波和横波的波速、衰减率等取决于孔隙流体与固相骨架间的相互作用以及固相骨架本身的粘性.同时,研究了半空间自由边界上入射波(纵波、横波)的反射问题。得到了非均匀反射波的波速、反射系数、衰减率等的表达式及其相关的数值结果.  相似文献   

15.
Wave propagation in a porous elastic medium saturated by two immiscible fluids is investigated. It is shown that there exist three dilatational waves and one transverse wave propagating with different velocities. It is found that the velocities of all the three longitudinal waves are influenced by the capillary pressure, while the velocity of transverse wave does not at all. The problem of reflection and refraction phenomena due to longitudinal and transverse wave incident obliquely at a plane interface between uniform elastic solid half-space and porous elastic half-space saturated by two immiscible fluids has been analyzed. The amplitude ratios of various reflected and refracted waves are found to be continuous functions of the angle of incidence. Expression of energy ratios of various reflected and refracted waves are derived in closed form. The amplitude ratios and energy ratios have been computed numerically for a particular model and the results obtained are depicted graphically. It is verified that during transmission there is no dissipation of energy at the interface. Some particular cases have also been reduced from the present formulation.  相似文献   

16.
The propagation of elastic waves is studied in a porous solid saturated with two immiscible viscous fluids.The propagation of three longitudinal waves is represented through three scalar potential functions.The lone transverse wave is presented by a vector potential function.The displacements of particles in different phases of the aggregate are defined in terms of these potential functions.It is shown that there exist three longitudinal waves and one transverse wave.The phenomena of reflection and refraction due to longitudinal and transverse waves at a plane interface between an elastic solid half-space and a porous solid half-space saturated with two immiscible viscous fluids are investigated.For the presence of viscosity in pore-fluids,the waves refracted to the porous medium attenuate in the direction normal to the interface.The ratios of the amplitudes of the reflected and refracted waves to that of the incident wave are calculated as a nonsingular system of linear algebraic equations.These amplitude ratios are used to further calculate the shares of different scattered waves in the energy of the incident wave.The modulus of the amplitude and the energy ratios with the angle of incidence are computed for a particular numerical model.The conservation of the energy across the interface is verified.The effects of variations in non-wet saturation of pores and frequencies on the energy partition are depicted graphically and discussed.  相似文献   

17.
The theory of Tuncay and Corapcioglu (Transp Porous Media 23:237–258, 1996a) has been employed to investigate the possibility of plane wave propagation in a fractured porous medium containing two immiscible fluids. Solid phase of the porous medium is assumed to be linearly elastic, isotropic and the fractures are assumed to be distributed isotropically throughout the medium. It has been shown that there can exist four compressional waves and one rotational wave. The phase speeds of these waves are found to be affected by the presence of fractures, in general. Of the four compressional waves, one arises due to the presence of fractures in the medium and the remaining three are those encountered by Tuncay and Corapcioglu (J Appl Mech 64:313–319, 1997). Reflection and transmission phenomena at a plane interface between a uniform elastic half-space and a fractured porous half-space containing two immiscible fluids, are analyzed due to incidence of plane longitudinal/transverse wave from uniform elastic half-space. Variation of modulus of amplitude and energy ratios with the angle of incidence are computed numerically by taking the elastic half-space as granite and the fractured porous half-space as sandstone material containing non-viscous wetting and non-wetting fluid phases. The results obtained in case of porous half-space with fractures, are compared graphically with those in case of porous half-space without fractures. It is found that the presence of fractures in the porous half-space do affect the reflection/transmission of waves, which is responsible for raising the reflection and lowering the transmission coefficients.  相似文献   

18.
A problem concerned with the reflection and refraction of thermoelastic plane waves at an imperfect interface between two generalized thermally conducting cubic crystal solid half-spaces of different elastic and thermal properties with two relaxation times has been investigated. The generalized thermoelastic theory with two relaxation times developed by Green and Lindsay has been used to study the problem. The expressions for the reflection and refraction coefficients which are the ratios of the amplitudes of reflected and refracted waves to the amplitude of incident waves are obtained for an imperfect boundary and deduced for normal stiffness, transverse stiffness, thermal contact conductance, slip and welded boundaries. Amplitude ratios of different reflected and refracted waves for different boundaries with angle of emergence have been compared graphically for different incident waves. It is observed that the amplitude ratios of reflected and refracted waves are affected by the stiffness and thermal properties of the media.  相似文献   

19.
The reflection of a transverse wave from the surface of a piezoelectric crystal of class 6 is considered for the case when the reflection plane coincides with or is close to the plane of transverse isotropy. The dependence of the phase shift of the reflected wave on crystal piezomoduli and other parameters is investigated. Reflection angles corresponding to maximum sensitivity of the phase shift φ to a change in piezomoduli are found. The influence of the piezoeffect on the reflection phase shift turns out to be most pronounced at grazing incidence along the transverse isotropic direction. Then the switching on of the (arbitrarily small) piezoeffect changes the phase from 0 to π, which gives annihilation between incident and reflected bulk waves.  相似文献   

20.
In this paper we have derived reflection and transmission coefficients of qP-waves at a corrugated interface between two different elastic half-spaces of monoclinic type. Using Rayleigh’s method, the expressions for reflection and transmission coefficients are derived in closed form for a specific interface and for the first order approximation of the corrugation. Numerical computations are performed for a specific model and the results obtained have been shown graphically. The variation of the modulus of reflection and transmission coefficients with the angle of incidence, frequency and corrugation of the interface are shown separately. These coefficients are found to be strongly influenced by the angle of incidence, frequency, elastic parameters and amplitude of the corrugation of the interface. It is found that (i) the modulus of reflection and transmission coefficients at the plane interface are independent of corrugation of the interface and that of frequency of the incident wave, (ii) the reflection and transmission coefficients of regularly reflected and transmitted waves are found to be greater than that of irregularly reflected and transmitted waves, (iii) the coefficients of irregularly reflected and transmitted waves are found to increase and decrease with increase of corrugation and frequency parameters respectively. The results of Singh and Khurana [Singh, S.J., Khurana, S., 2001. Reflection and transmission of P- and SV-waves at the interface two between monoclinic elastic half-spaces. Proc. Natl. Acad. Sci. India 71(A) (IV), 305–319] have been reduced from the present problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号