首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly efficient red electrophosphorescent device exhibited saturated red emission and an impressive external quantum efficiency [eta(ext) = 10.8% (ph/el)] with simple device configuration of doping an iridium complex (Mpq(2)Iracac) into a novel ambipolar spiro-configured donor-acceptor host material (D2ACN) has been developed.  相似文献   

2.
A novel bipolar host tris(4-(pyrimidin-5-yl)phenyl)amine (TPMTPA) constructed by incorporating triphenylamine as the electron-donating core and pyrimidine as the electron-accepting peripheries was designed and synthesized. TPMTPA achieves excellent bipolar charge transport properties and has high enough triplet energy level to sensitize green, yellow, orange, red and deep-red phosphors. By using TPMTPA as a host, high performance green, yellow, orange, red and deep-red phosphorescent organic light-emitting devices (PhOLEDs) were demonstrated with maximum external quantum efficiencies of 20.4%, 17.6%, 15.1%, 15.3% and 15.7% respectively. These results suggested that TPMTPA is a versatile high performance host for PhOLEDs of different emission colors.  相似文献   

3.
A novel compound was designed and synthesized by connecting a dicyanobenzene acceptor and two 9,9-dimethyl-9,10-dihydroacridine donors to the 1,3,5-position of a phenyl ring by meta-position connection. This compound, which is a novel emitter for OLED devices, exhibits preferable heat stability. Moreover, the energy gap between its singlet and triplet states is as small as 0.04 eV, resulting in this molecule possesses thermally activated delayed fluorescence. Therefore, the corresponding device showed efficient electroluminescent performances. The maximum external quantum efficiency, maximum current efficiency, maximum power efficiency and maximum luminance were 16.5%, 40.8 cd A?1, 45.8 lm W?1 and 5120 cd m?2, respectively. In addition, the CIEx,y only changed from (0.22, 0.38) to (0.22, 0.39) over the entire operating voltage range, which confirms that the device possesses highly stable chromaticity with respect to the current density. Based on these experimental results, meta-connected type structures may provide a new approach for developing high-performance TADF emitters for OLED applications.  相似文献   

4.
The peripheral triphenylamine-encapsulated red-emitting iridium(III) complexes have been designed and synthesized. External quantum efficiency over 15% has been realized in single-layer polymer light-emitting diodes, which is the highest ever reported for solution-processed red phosphorescence.  相似文献   

5.
Dibenzofuran (DBF) is converted to a vacuum-sublimable, electron-transporting host material via 2,8-substitution with diphenylphosphine oxide moieties. Close pi-pi stacking and the inductive influence of P=O moieties impart favorable electron-transport properties without lowering the triplet energy. A maximum external quantum efficiency of 10.1% and luminance power efficiency of 25.9 lm/W are realized using this material as the host for the blue-green electrophosphorescent molecule, iridium(III) bis(4,6-(di-fluorophenyl)pyridinato-N,C(2')picolinate (FIrpic).  相似文献   

6.
This paper reports the synthesis and physical properties of two novel carbazole-based dendritic host materials Cz-CCP and Cz-mCP for solution-processed blue phosphorescent organic light-emitting devices (PhOLEDs). These dendritic hosts exhibit high triplet energy (≥2.85 eV), excellent film-forming ability (with low root-mean-square (rms) values less than 0.2 nm), high glass-transition temperatures in the range of 242–248 °C, and the appropriate HOMO energy levels (?5.33–?5.35 eV) facilitating the transfer of holes from Poly(3,4-ethylenedioxythiophene):Poly(styrene-4-sulfonate) (PEDOT:PSS) to the emitting layer. The single-layer device using Cz-CCP and Cz-mCP as the host for the phosphorescence emitter iridium(III) bis(4,6-difluorophenylpyridinato)-picolinate (FIrpic) showed the maximum luminance efficiencies of 9.6 and 10.8 cd A?1, respectively. By introducing a thin 1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene (TPBI) electron-transporting and exciton-confining layer, the maximum efficiency of the solution-processed double-layer device based on Cz-CCP and Cz-mCP can be further improved to 20.5 and 22.7 cd A?1, and maximum external quantum efficiencies as high as 10.2% and 11.5%, respectively. These results demonstrated that the newly synthesized, carbazole-based dendritic host materials are advantageous for fabrication of highly efficient blue PhOLEDs.  相似文献   

7.
Phosphorescence studies of a series of facial homoleptic cyclometalated iridium(III) complexes have been carried out. The complexes studied have the general structure Ir(III)(C-N)(3), where (C-N) is a monoanionic cyclometalating ligand: 2-(5-methylthiophen-2-yl)pyridinato, 2-(thiophen-2-yl)-5-trifluoromethylpyridinato, 2,5-di(thiophen-2-yl)pyridinato, 2,5-di(5-methylthiophen-2-yl)pyridinato, 2-(benzo[b]thiophen-2-yl)pyridinato, 2-(9,9-dimethyl-9H-fluoren-2-yl)pyridinato, 1-phenylisoquinolinato, 1-(thiophen-2-yl)isoquinolinato, or 1-(9,9-dimethyl-9H-fluoren-2-yl)isoquinolinato. Luminescence properties of all the complexes at 298 K in toluene are as follows: quantum yields of phosphorescence Phi(p) = 0.08-0.29, emission peaks lambda(max) = 558-652 nm, and emission lifetimes tau = 0.74-4.7 micros. Bathochromic shifts of the Ir(thpy)(3) family [the complexes with 2-(thiophen-2-yl)pyridine derivatives] are observed by introducing appropriate substituents, e.g., methyl, trifluoromethyl, or thiophen-2-yl. However, Phi(p) of the red emissive complexes (lambda(max) > 600 nm) becomes small, caused by a significant decrease of the radiative rate constant, k(r). In contrast, the complexes with the 1-arylisoquinoline ligands are found to have marked red shifts of lambda(max) and very high Phi(p) (0.19-0.26). These complexes are found to possess dominantly (3)MLCT (metal-to-ligand charge transfer) excited states and have k(r) values approximately 1 order of magnitude larger than those of the Ir(thpy)(3) family. An organic light-emitting diode (OLED) device that uses Ir(1-phenylisoquinolinato)(3) as a phosphorescent dopant produces very high efficiency (external quantum efficiency eta(ex) = 10.3% and power efficiency 8.0 lm/W at 100 cd/m(2)) and pure-red emission with 1931 CIE (Commission Internationale de L'Eclairage) chromaticity coordinates (x = 0.68, y = 0.32).  相似文献   

8.
A pyrene-containing single-molecule excimer-emitting compound, 1,8-bis(pyren-2-yl)naphthalene (BPyN), was synthesized. With BPyN as a host emitter, C545T-based green OLEDs were fabricated, exhibiting high efficiencies of 22 lm W(-1), 22 cd A(-1) and 6.2% external quantum efficiency (EQE) at 100 cd m(-2), and 19 lm W(-1), 22 cd A(-1) and 6.2% EQE at 1000 cd m(-2).  相似文献   

9.
Wong KT  Chen YM  Lin YT  Su HC  Wu CC 《Organic letters》2005,7(24):5361-5364
[structure: see text] A novel host material for efficient green and red electrophosphorescence devices is obtained by adopting the new molecular strategy of nonconjugated linkage of carbazole and fluorene moieties. The new host combines characteristics of both carbazole and fluorene, giving a large-gap host material suitable for green and red phosphorescent OLEDs. Green and red phosphoresecent OLEDs with external quantum efficiencies up to 10% have been achieved with this new host material.  相似文献   

10.
The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.  相似文献   

11.
Bright (maximum 11,000 cd m(-2) and 500 cd m(-2) at 20 mA cm(-2)) and efficient (maximum external quantum efficiency of 3.1% at 1 mA cm(-2)) red (CIE, x = 0.66, y = 0.34) organic light-emitting diodes (OLEDs) employ arylaminospirobifluorene-substituted fumaronitriles as the novel non-dopant red emitter.  相似文献   

12.
本文通过多步有机反应制备了化合物9-苯基-9′-(4-二苯基氧化膦)苯基-氧杂蒽[diphenyl(4-(9-phenyl-9H-xanthen-9-yl)phenyl)phosphine oxide,DPPO],低温磷光发射光谱测试表明该化合物具有高的三线态能级(2.88eV),它可以作为天蓝色磷光发光材料双(4,6-二氟苯基吡啶-N,C2)吡啶甲酰合铱[bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(Ⅲ),FIrpic,ET=2.62eV]的主体材料.将主体材料DPPO用于蓝色磷光有机发光二极管中,该器件在100cd/m2的亮度下,电流效率和流明效率分别达到30.6cd/A和19.2lm/W,最大外量子效率达到13.6%.  相似文献   

13.
Based on a p-type scaffold, a novel solution-processable phosphonate functionalized deep-blue fluorescent emitter has been designed and synthesized. The corresponding non-doped single-layer SMOLED shows a peak current efficiency of 0.76 cd A(-1) with CIE coordinates of (0.15, 0.09), which is about three orders of magnitude higher than that of the prototype with tert-butyl substituents.  相似文献   

14.
Three new emitters,namely 10,10'-(quinoline-2,8-diyl)bis(10 H-phenoxazine)(Fene),10,10'-(quinoline-2,8-diyl)bis(10 H-phenothiazine)(Fens) and 10,10'-(quinoline-2,8-diyl)bis(9,9-dimethyl-9,10-dihydroacridine)(Yad),featuring quinoline as a new electron acceptor have been designed and conveniently synthesized.These emitters possessed small singlet-triplet splitting energy(ΔEst) and twisted structures,which not only endowed them show thermally activated delayed fluorescence(TADF)properties but also afforded a remarkable aggregation-induced emission(AIE) feature.Moreover,they also showed aggregation-induced delayed fluorescence(AIDF) property and good photoluminescence(PL) property,which are the ideal emitters for non-doped organic light-emitting diodes(OLEDs).Furthermore,high-performance non-doped OLEDs based on Fene,Fens and Yad were achieved,and excelle nt maximum external quantum efficiencies(EQE_(max)) of 14,9%,13.1% and 17,4%,respectively,were obtained.It was also found that all devices exhibited relatively low turn-on voltages ranging from 3.0 V to3.2 V probably due to their twisted conformation and the AIDF properties.These results demonstrated the quinoline-based emitters could have a promising application in non-doped OLEDs.  相似文献   

15.
In order to develop highly emissive red phosphorescent materials for OLED application, novel bis-cyclometalated iridium(III) complexes were developed using the 1-(dibenzo[b,d]furan-4-yl)isoquinolinato-N,C3′ (dbfiq) cyclometalating ligand. When 1,3-bis(3,4-dibutoxyphenyl)propane-1,3-dionate (bdbp) is employed as an ancillary ligand, Ir(dbfiq)2(bdbp) 1 exhibits red photoluminescence (PL) at 640 nm with a quantum yield (ΦPL) of 0.61 (in toluene, 298 K). Replacement of bdbp to dipivaloylmethanate (dpm) and acetylacetonate (acac) (Ir(dbfiq)2(dpm) 2 and Ir(dbfiq)2(acac) 3, respectively) does not affect the PL spectrum, but reduces ΦPL to 0.55 and 0.49 for 2 and 3, respectively. Similar tendency is also found in the doped poly(methyl methacrylate) (PMMA) film, and 1 is more emissive (ΦPL = 0.17) than 2 and 3 (ΦPL = 0.08 and 0.06, respectively). Using 1 as a phosphorescent dopant, polymer light-emitting diodes (PLEDs) were fabricated, of which structure was ITO/PEDOT:PSS (40 nm)/PVCz:1:PBD (100 nm)/CsF (1 nm)/Al (250 nm). Pure red electroluminescence (EL) is obtained from the fabricated PLEDs, affording a CIE chromaticity coordinate of (0.68, 0.31). When 0.51 mol% of 1 is incorporated in the PVCz-based emitting layer, the PLED shows maximum luminance of 7270 cd m−2 at 16.5 V, power efficiency of 1.4 lm W−1 at 7.5 V, and external quantum efficiency of 6.4% at 9.0 V. PLEDs with the same structure and components were also fabricated using 2 and 3, and their device characteristics were investigated. In proportion to the PL quantum yields, 1 affords better device performance than 2 and 3. Owing to four butoxy groups introduced to the bdbp ligand, 1 exhibits high solubility in organic solvents such as chloroform and toluene, and thus, is an excellent red phosphorescent dopant for solution-processed OLEDs.  相似文献   

16.
A novel and highly efficient thiophenquinolone-based red iridium(III) complex bearing a bulky fluorophenyl moiety is designed and synthesized. The complex shows intensive red phosphorescence (596 nm with shoulder at 642 nm), high photoluminescence efficiency (0.62) and broad full width at half maximum (81 nm). The bulky fluorophenyl moiety introduced into the complex could improve the efficiency of electroluminescence with the maximum current efficiency, power efficiency and the external quantum efficiency up to 29.0 cd/A, 30.4 lm/W and 17.6% due to the effective steric hindrance in solid states.  相似文献   

17.
Density functional theory calculations were carried out to investigate the electronic structures of representative ambipolar hosts for blue electroluminescence, based on two carbazole end groups and meta-terphenyl (mTP)-like bridges. The bridge molecular segments include mTP, 2,6-bisphenylpyridine, 3,5-bisphenylpyridine, and 2,6-bisphenylpyrimidine. While the ionization potentials and electron affinities of these molecules are mainly determined by their hole- and electron-transport subunits, respectively, each subunit impacts the electronic properties of the other upon their binding, mainly in an inductive way. Importantly, the lowest triplet state of the hosts is determined to be confined into the mTP-like bridges since these are the subunits with lowest individual triplet energy. Extension of the phenyl-based π-conjugated system via meta linkages is found to be effective in modulating the electron affinity value while maintaining a high triplet energy.  相似文献   

18.
Liao YL  Lin CY  Wong KT  Hou TH  Hung WY 《Organic letters》2007,9(22):4511-4514
A novel ambipolar spiro-configured D-A blue-light emitter bearing hole-transporting diphenylamino groups and electron-transporting phenylbenzimidazole groups was synthesized, characterized, and incorporated into an efficient single-layer organic light-emitting diode (OLED) device exhibiting blue-emission Commission International d'Eclairage (CIE) coordinates of 0.15 and 0.14, a turn-on potential of 4 V, a maximum brightness of 2800 cd/m2 at 830 mA/cm2 (19 V), and a maximum quantum efficiency of 0.53% (0.61 cd/A).  相似文献   

19.
Tao Y  Yang C  Qin J 《Chemical Society reviews》2011,40(5):2943-2970
Phosphorescent organic light-emitting diodes (PhOLEDs) unfurl a bright future for the next generation of flat-panel displays and lighting sources due to their merit of high quantum efficiency compared with fluorescent OLEDs. This critical review focuses on small-molecular organic host materials as triplet guest emitters in PhOLEDs. At first, some typical hole and electron transport materials used in OLEDs are briefly introduced. Then the hole transport-type, electron transport-type, bipolar transport host materials and the pure-hydrocarbon compounds are comprehensively presented. The molecular design concept, molecular structures and physical properties such as triplet energy, HOMO/LUMO energy levels, thermal and morphological stabilities, and the applications of host materials in PhOLEDs are reviewed (152 references).  相似文献   

20.
A series of novel solution-processable small-molecule host materials: 2DPF-TCz, 2SBF-TCz, 27DPF-TCz, and 27SBF-TCz comprising a fluorene monomer as the rigid core and tri-carbazole as the periphery have been designed and synthesized, and their optical, electrochemical, and thermal properties have been fully characterized. The host materials exhibit high glass-transition temperatures (231–310 °C) and high triplet energy levels (2.61–2.73 eV). High-quality amorphous thin films can be obtained by spin-coating the host materials from solutions. It is found that the HOMO level of the host materials can be tuned by linking the tri-carbazole unit to the 2,7 positions of the fluorine core, resulting in appropriate HOMO energy levels (−5.36 to −5.23 eV) for improved hole-injection in the device. Solution-processed blue and green electrophosphorescent devices bases on the developed host materials exhibit high efficiencies of 21.2 and 34.8 cd A−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号