首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-performance liquid chromatographic method for the quantification of rufloxacin in human serum and urine has been developed and validated. The compounds, rufloxacin and internal standard, are extracted from buffered serum and urine using dichloromethane. They are then separated on an anion-exchange column using 0.05 M phosphate buffer-acetonitrile (80:20, v/v). The eluate is quantified by measuring the ultraviolet absorbance at 296 nm. The lower limit of detection for the analyte is 0.1 microgram/ml in serum and 0.05 micrograms/ml in urine. The method is linear from 0.3 to 10 micrograms/ml for serum and 0.1 to 10 micrograms/ml for urine. The method has been applied in a pharmacokinetic study in volunteers.  相似文献   

2.
A novel high-performance liquid chromatographic method for the determination of codeine, norcodeine and morphine in plasma and urine has been developed. The compounds were separated on a cyano column (15 cm x 4.6 mm, 5 microns particle size) using a mobile phase of acetonitrile-triethylamine-distilled water (4:0.1:95.9, v/v) pH 3.1 and then determined by fluorescence detection. Calibration curves in the range 5-200 ng/ml for plasma and 0.1-10 micrograms/ml for urine were linear and passed through the origin. The imprecision and inaccuracy of the assay were less than 10% and the limits of detection were 2 ng/ml for all three compounds in human plasma.  相似文献   

3.
An isocratic reversed-phase ion-pair liquid chromatographic method for the determination of tianeptine and its two main metabolites in plasma, urine and tissues, using an internal standard, is reported. The influence of two stationary phases on the retention of the drugs was studied. The drugs were extracted as ion pairs, using a heptane-octanol-tetraheptylammonium bromide mixture (98:2:0.5, v/v/w) as extraction solvent. This extraction procedure yielded plasma drug recoveries of greater than 60% and allowed UV detection at 220 nm without interference from endogenous components of plasma, urine or tissues. Linear standard curves up to 1.00 micrograms/ml and drug determination down to 0.01 microgram/ml were observed. This method has been successfully applied to the analysis of human plasma and urine samples and of encephales from tianeptine-dosed rats.  相似文献   

4.
A sensitive reversed-phase high-performance liquid chromatographic (HPLC) technique with ultraviolet detection has been developed to determine the concentration of BRB-I-28 (I), a novel antiarrhythmic agent, in dog plasma and urine. The mobile phase was acetonitrile-methanol-37.5 mM phosphate buffer, pH 6.8-triethylamine (50:50:75:0.1, v/v). The compound was extracted from dog plasma and urine with chloroform after alkalinization with sodium hydroxide. The extraction recovery was 83% from plasma and 84% from urine. Good linearity (r > 0.996) was observed throughout the ranges 0.1-12.0 micrograms/ml (plasma) and 0.1-8.0 micrograms/ml (urine). Intra- and inter-assay variabilities were less than 4%. The lower limit of quantitation was 0.08 microgram/ml in either plasma or urine. HPLC analysis of plasma and urine samples from a dog treated with I has demonstrated that the method was accurate and reproducible.  相似文献   

5.
A reversed-phase high-performance liquid chromatographic assay with ultraviolet detection at 243 nm has been developed for the quantitative determination of methylprednisolone (MP) and methylprednisolone 21-[8-[methyl-(2-sulfoethyl)amino]-8-oxooctanoate] sodium salt (MPSO) in human urine following therapeutic doses in humans. The assay procedure involves stabilization of urine samples by addition of disodium ethylenediaminetetraacetic acid (Na2EDTA) and ion-pair extractions of MPSO using tetraethylammonium chloride (TEACl) as the counter ion. After extracting both drugs and internal standard into chloroform, the extract was evaporated to dryness under nitrogen. The resulting residue was reconstituted in 200-500 microliters of mobile phase and chromatographed on an IBM C18 reversed-phase column (5 microns). The mobile phase was a mixture of water-acetonitrile-isopropanol (71.2:18.8:10.0, v/v) containing 75 microliters of 0.1 M hydrochloric acid and 0.450 g of TEACl per liter. Propyl p-hydroxybenzoate was used as an internal standard. The extraction efficiencies of MP and MPSO were greater than 90% using the ion-pairing agent TEACl. The chromatographic responses were linear up to about 200 micrograms/ml for MP and 80 micrograms/ml for MPSO and had sufficient precision and accuracy to provide quantitative data from human urine. The assay detection limit was about 8 ng/ml for MP and 25 ng/ml for MPSO in human urine. Stability studies in urine indicated that without Na2EDTA stabilization and at room temperature, rapid degradation of MPSO occurred in urine. Addition of EDTA to the urine specimen and storage at -70 degrees C increased the stability of MPSO, and little or no degradation was observed in urine stored for more than 60 days. The method has been used in the simultaneous determination of MP and MPSO in urine specimens obtained from a single-dose tolerance study of MPSO in normal male volunteers.  相似文献   

6.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) assay was developed for the determination of amdinocillin (formerly mecillinam) in human plasma and urine. The assay is performed by direct injection of a plasma protein-free supernatant or a dilution of urine. A 10 micrometer muBondapak phenyl column with an eluting solvent of water--methanol--1 M phosphate buffer, pH 7 (70:30:0.5) was used, with UV detection of the effluent at 220 nm. Azidocillin potassium salt [potassium-6-(D-(-)-alpha-azidophenyacetamido)-penicillanate] was used as the internal standard and quantitation was based on peak height ratio of amdinocillin to that of the internal standard. The assay has a recovery of 74.4 +/- 6.3% (S.D.) in the concentration ranges of 0.1-20 microgram per 0.2 ml of plasma with a limit of detection equivalent to 0.5 microgram/ml plasma. The urine assay was validated over a concentration range of 0.025-5 mg/ml of urine, and has a limit of detection of 0.025 mg/ml (25 microgram/ml) using a 0.1-ml urine specimen per assay. The assay was applied to the determination of plasma and urine concentrations of amdinocillin following intravenous administration of a 10 mg/kg dose of amdinocillin to two human subjects. The HPLC and microbiological assays were shown to correlate well for these samples.  相似文献   

7.
A liquid chromatographic method using a solid-phase extraction procedure for the quantification of sotalol in plasma and urine is described. Sotalol is eluted from an extraction column with ethyl acetate-acetonitrile (1:2) and, after separation by reversed-phase high-performance liquid chromatography on a mu Bondapak C18 column, is quantified by fluorescence detection at excitation and emission wavelengths of 240 and 310 nm, respectively. The method has been demonstrated to be linear over the concentration ranges 10-6000 ng/ml in plasma and 0.5-100 micrograms/ml in urine. Mean inter-assay accuracy of the method for plasma ranged from 93 to 100% and for urine from 102 to 114%; precision ranged from 0.5 to 1.6% for plasma over a concentration range of 200-4000 ng/ml and for urine from 0.7 to 2.0% at concentrations of 2-50 micrograms/ml. Mass spectrometry confirmed the presence of sotalol in isolated chromatographic fractions of plasma and urine extracts from subjects given sotalol orally.  相似文献   

8.
A high-performance liquid chromatographic method has been developed for the determination of pipotiazine in human plasma and urine. After selective extraction, pipotiazine and the internal standard (7-methoxypipotiazine) and chromatographed on a column packed with Spherosil XOA 600 (5 micrometers) using a 7:3 (v/v) mixture of diisopropyl either--isooctane (1:1, v/v + 0.2% triethylamine and diisopropyl ether--methanol (1:1, v/v) + 0.2% triethylamine + 2.6% water. The eluted compounds are measured by fluorescence detection. The sensitivity of the method was established at 0.25 ng/ml pipotiazine in plasma and 2 ng/ml pipotiazine in urine (C.V. less than 5%). The method has been successfully applied to a pharmacokinetic study following a single oral administration of 10 mg of pipotiazine.  相似文献   

9.
A simple and sensitive high-performance liquid chromatographic method with ultraviolet detection is described for the simultaneous determination of lansoprazole and its metabolites in human serum and urine. The analytes in serum or urine were extracted with diethyl ether-dichloromethane (7:3, v/v) followed by evaporation, dissolution and injection into a reversed-phase column. The recoveries of authentic analytes added to serum at 0.05-2 micrograms/ml or to urine at 1-20 micrograms/ml were greater than 88%, with the coefficients of variation less than 7.1%. The minimum determinable concentrations of all analytes were 5 ng/ml in serum and 50 ng/ml in urine. The method was successfully applied to a pharmacokinetic study of lansoprazole in human.  相似文献   

10.
A sensitive method for the simultaneous high-performance liquid chromatographic determination of clarithromycin and its active metabolite in plasma and urine is described. Alkalinized samples were coextracted with an internal standard and analyzed on a C8 column using electrochemical detection. Recoveries were greater than or equal to 85% and consistent. Standard curves for plasma were linear in the range 0-2 micrograms/ml for both compounds (r greater than 0.99), with limits of quantification of approximately 10.03 micrograms/ml (0.5-ml sample). Within-day and day-to-day precision were good, with coefficients of variation mostly within +/- 5%; accuracy for both compounds were routinely within 90-110% of theoretical values. Standard curves for urine were linear in the range 0-100 micrograms/ml with limits of quantification of 0.5 micrograms/ml (0.2-ml sample). Urine assays also had similar within-day and day-to-day precisions and accuracy.  相似文献   

11.
The use of stable isotope-labeled tracer compounds is the safest and most effective method to perform many steady state pharmacokinetic and drug interaction studies. We describe a method by which the heavily deuterated 2H10 analogues of carbamazepine (2H10 CBZ) and phenytoin (2H10 PHT) can be chromatographically separated by high-performance liquid chromatography from unlabeled CBZ and PHT. All compounds are quantitated against an internal standard (IS) (10,11-dihydrocarbamazepine) and measured using conventional UV detection rather than mass spectrometry. Baseline resolution of extracted serum containing 2H10 CBZ, CBZ, 2H10 PHT, PHT and IS is achieved on a heated (55 degrees C) 25 cm x 4.6 mm BioAnalytical Systems Phase II 5 microns ODS column with an isocratic mobile phase consisting of water-acetonitrile-tetrahydrofuran (80:16:4, v/v/v) at 1.2 ml/min. Eluting compounds were monitored at a UV wavelength of 214 nm. Calculated resolution of 2H10 CBZ from CBZ and of 2H10 PHT from PHT were 1.3. Serum standard curves were linear (R greater than or equal to 0.999) over a range of 0.5-14 micrograms/ml for 2H10 CBZ, 0.5-20 micrograms/ml for CBZ, 0.5-20 micrograms/ml for 2H10 PHT, and 0.5-30 micrograms/ml for PHT. Within-day percent relative standard deviations (precision) were less than 6% in all cases.  相似文献   

12.
A direct injection analysis by high-performance liquid chromatography has been developed for oxytetracycline in serum of animals and fish. A Hisep shielded hydrophobic phase column (15 cm x 4.6 mm I.D.) and a mobile phase of methanol-0.2 M oxalic acid (10:90, v/v, pH 7.0) with ultraviolet detection at 360 nm were used. The standard calibration curves in serum of chicken, hog, cattle and rainbow trout were linear over the range 0.1-20 micrograms/ml. The recoveries of oxytetracycline from all serum samples determined at two different concentrations (0.5 and 2.0 micrograms/ml) were 88-103%. The detection limit was 0.05 micrograms/ml for every serum sample.  相似文献   

13.
A rapid, sensitive, stereospecific reversed-phase high-performance liquid chromatographic method was developed for simultaneous quantitation of ketoprofen enantiomers, probenecid and their conjugates in biological fluids. Following addition of the internal standard, indoprofen, the constituents were extracted into isooctane-isopropanol (95:5), water-washed, extracted with chloroform, then evaporated and the residue sequentially derivatized with ethyl chloroformate and L-leucinamide hydrochloride. The formed diastereomers were chromatographed on a reversed-phase column with a mobile phase of 0.06 M KH2PO4-acetonitrile-triethylamine (65:35:0.1) at a flow-rate of 1 ml/min and a detection wavelength of 275 nm. The minimum quantifiable concentration was 0.5 micrograms/ml in 100 microliters of rat plasma and urine samples. The intra- and inter-day coefficients of variation for this method are less than 10%. The assay is successfully applied to a pharmacokinetic study. The simultaneous analysis of probenecid with several other non-steroidal anti-inflammatory drugs was also successful.  相似文献   

14.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid-liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 microliters of methanol-water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 micrograms/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

15.
A method is described for the extraction of a phosphonic acid angiotensin-converting enzyme inhibitor from either urine or plasma, and subsequent quantitation using high-performance liquid chromatographic (HPLC) analysis and post-column o-phthalaldehyde reagent derivatization. The compound cannot be quantitatively extracted from the body fluids, but use of a fluorinated internal standard allowed for the computation of accurate results. With the use of an internal standard, excellent precision, linearity, and recovery were obtained for analyte response in both urine and plasma. In urine a working range of 0.2-10 micrograms/ml was found, with a limit of detection of 0.1 micrograms/ml. For plasma the working range was found to be 2-500 ng/ml, and the limit of detection was established as 1 ng/ml. Due to the non-polar character of the analyte at low pH values, it was possible to use novel extraction (solid-phase C8 column) and HPLC [poly(styrenedivinyl benzene) HPLC column] conditions to separate and quantitate the compound from plasma and urine.  相似文献   

16.
A simple, selective and sensitive procedure is described for the quantitation of flupirtine maleate (FLU) and its active acetylated metabolite (Met. 1) in plasma and urine. Using a 0.5-ml sample, a sensitivity of 10 ng/ml is easily achieved with a reversed-phase octadecylsilane (C18) column, and a high-performance liquid chromatographic system with fluorescence detection. Quantitation from plasma involves addition of an internal standard, protein precipitation with acetonitrile and a sample concentrating step, while for urinalysis the samples are taken through a single extraction with methylene chloride. Analytical recoveries of FLU and Met. 1 from plasma averaged greater than or equal to 95%, while from urine only 60 and 50%, respectively, could be recovered. The overall, inter- and intra-day variability for both FLU and Met. 1 averaged 6, 5 and 3%, in plasma, respectively. Standard calibration plots in plasma were linear (r greater than or equal to 0.99) for FLU (range: 0.01-10.0 micrograms/ml) and Met. 1 (range: 0.5-25 micrograms/ml) over the extended range. A slightly modified elution system was employed for quantitation of FLU and Met. 1 in urine.  相似文献   

17.
A high-performance liquid chromatographic method was developed for the simultaneous determination of haloperidol and reduced haloperidol in human plasma, urine and rat tissue homogenates using bromperidol as an internal standard. The method involved extraction followed by injection of 50-80 microliters of the aqueous layer onto a C18 reversed-phase column. The mobile phase was 0.5 M phosphate buffer-acetonitrile-methanol (58:31:11, v/v/v) and the flow-rate was 0.6 ml/min. The column effluent was monitored by ultraviolet detection at 214 nm. The retention times for reduced haloperidol, haloperidol and bromperidol were 5.4, 7.2 and 8.4 min, respectively. The detection limits for haloperidol and reduced haloperidol in human plasma were both 0.5 ng/ml, and the corresponding values in human urine were both 5 ng/ml. The coefficients of variation of the assay were generally low (below 10.7%) for plasma, urine, blood and tissue homogenates. No interferences from endogenous substances or any drug tested were found.  相似文献   

18.
In an effort to characterize the pharmacokinetic behavior of the antimitotic agent N-desacetylcolchicine a selective, sensitive high-performance liquid chromatographic method was developed for the determination of N-desacetylcolchicine, demecolcine and colchicine in serum or urine. To 0.5 ml of serum or 0.1 ml of urine diluted to 0.5 ml were added 50 microliters demecolcine (2 micrograms/ml) which serves as the internal standard. The sample was extracted using a C2 reversed-phase solid extraction column. N-Desacetyl-colchicine, colchicine and the internal standard were eluted from the column with methanol. The combined eluates were evaporated to dryness and the residue was reconstituted with water. The reconstituted sample was injected into a C18 reversed-phase column and eluted using a mobile phase consisting of 0.1 M potassium dihydrogenphosphate, 5 mM 1-pentanesulfonic acid in methanol and acetonitrile with a final pH of 6.0, at a flow rate of 1.5 ml/min. N-Desacetylcolchicine, colchicine and the internal standard were detected using a variable-wavelength ultraviolet detector at 254 nm. The limit of detection was 0.4 ng/ml for desacetylcolchicine and 4.0 ng/ml for colchicine. The method is linear over a concentration range of 1.0-200 ng/ml. The method has been shown to be a rapid, reliable method to monitor N-desacetylcolchicine levels in clinical trials in cancer patients.  相似文献   

19.
A high-performance liquid chromatographic method for the measurement of bumetanide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol-water-glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5-2000 ng/ml.  相似文献   

20.
A sensitive and selective high-performance liquid chromatographic (HPLC) method for the analysis of 1,2-diethyl-3-hydroxypyridin-4-one (CP94, I) and its 2-(1-hydroxyethyl) metabolite (II) in rat blood is described. I, II and the internal standard, 1-propyl-2-ethyl-3-hydroxypyridin-4-one (CP95, III) were extracted into dichloromethane (3 x 5 ml, with the addition of 1 g of sodium chloride) from blood (0.25 ml plus 0.75 ml of pH 7.0 morpholinopropanesulphonic acid buffer). Extractability approached 100% for I and III, and approximately 65% for II under these conditions. Chromatographic analysis was carried out using a Hypercarb porous graphitised carbon HPLC column (10 cm x 0.46 cm). The mobile phase was 14:86 (v/v) acetonitrile-NaH2PO4 buffer (10 mM, containing 2 mM EDTA, pH adjusted to 3 with phosphoric acid) and detection was by ultraviolet at 280 nm. Calibration curves were linear (correlation coefficient greater than 0.99) and reproducible over the concentration range 0-80 micrograms/ml and the coefficient of variation was less than 16% even at low (1 microgram/ml) concentrations. The minimum quantifiable level was 0.5 microgram/ml for both I and II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号