首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Indium phosphide sample was irradiated with 200?MeV Ag9+ ions for the fluence of 2?×?1013?ions?cm?2. The sample was chemically etched down up to 240?nm depth to investigate the distribution of defects at different regions. Raman scattering and glancing incidence X-ray diffraction spectra were recorded at different depths. The stress estimated from Raman shift was found to increase with depth up to 160?nm and thereafter it decreased and at a depth of 224?nm sample did not show any stress. Phonon coherence length estimated from the Phonon Confinement Model was found to vary between 43 and 18?nm with respect to depth. Glancing incidence X-ray diffraction results revealed the decrease in crystallite size from 16.12 to 1.00?nm in different depth regions.  相似文献   

2.
The defect structure of AlGaN/GaN superlattices and GaN layers grown through vapor-phase epitaxy from organometallic compounds is investigated using x-ray diffraction analysis before and after implantation with erbium ions at an energy of 1 MeV and a dose of 3 × 1015 cm?2, as well as after annealing. For a superlattice with a total thickness larger than the implantation depth, the satellites of the superlattice region strained under the action of ions disappear in the x-ray diffraction pattern after annealing at temperatures higher than 900°C. This suggests that the radiation-induced defects responsible for the positive deformation in the layer are annealed at these temperatures. However, annealing even at a temperature of 1050°C does not lead to complete recovery of the initial state and the positive deformation in the remaining regions is caused by residual defects. An analysis of the x-ray diffraction patterns demonstrates that, in samples with thin superlattices located at the depth corresponding to maximum radiation damage, the periodic structure that disappears after implantation at a dose of 3 × 1015 cm?2 is not recovered even after annealing at a temperature of 1050°C. This inference is confirmed by the results of examinations with an electron microscope.  相似文献   

3.
ABSTRACT

Polycarbonate (PC) and polyethylene terephthalate (PET) thermoplastic polymer films were irradiated by low energy ion beams such as 100 keV Hydrogen (H+) ions and 350 keV Nitrogen (N+) ions at varied fluence from 1?×?1013 ions/cm2 to 5?×?1014 ions/cm2. The depth profile concentration of ions was calculated using Stopping and Range of Ions in Matter (SRIM) software code. Fourier Transform Infrared (FTIR) technique shows decrement in the intensity of peaks and disappearance of peaks mainly related to carbonyl stretching at 1770?cm?1 and C–C stretching at 1500?cm?1. Scanning electron microscopy (SEM) of irradiated polymers showed the formation of pores. X-ray diffraction (XRD) analysis has showed decrease in the intensity indicating the decrease in crystallinity after irradiation. Mechanical studies revealed that the molecular weight and microhardness decrease with increase in ion fluence due to increase in chain scission. The contact angle increased with increase in ion fluence indicating the hydrophobic nature of polymer after irradiation. Antibiofilm activity test of irradiated films shows resistance to Salmonella typhi (S. typhi) pathogen responsible for typhoid. The study shows that Nitrogen ion induces more damage compared to Hydrogen ions and PC films get more modified than PET films.  相似文献   

4.
Nanocomposite polymer electrolyte thin films of polyvinyl alcohol (PVA)-orthophosphoric acid (H3PO4)-Al2O3 have been prepared by solution cast technique. Films are irradiated with 50 MeV Li3+ ions having four different fluences viz. 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions/cm2. The effect of irradiation on polymeric samples has been studied and characterized. X-ray diffraction spectra reveal that percent degree of crystallinity of samples decrease with ion fluences. Glass transition and melting temperatures have been also decreased as observed in differential scanning calorimetry. A possible complexation/interaction has been shown by Fourier transform infrared spectroscopy. Temperature-dependent ionic conductivity shows an Arrhenius behavior before and after glass transition temperature. It is observed that ionic conductivity increases with ion fluences and after a critical fluence, it starts to decrease. Maximum ionic conductivity of ~2.3?×?10?5 S/cm owing to minimum activation energy of ~0.012 eV has been observed for irradiated electrolyte sample at fluence of 5?×?1011 ions/cm2. The dielectric constant and dielectric loss also increase with ion fluences while they decrease with frequency. Transference number of ions shows that the samples are of purely ionic in nature before and after ion irradiation.  相似文献   

5.
Superconducting YBa2Cu3O7 ? x films were fabricated by dc magnetron sputtering. They were irradiated with 1.2-MeV He+ ions to doses of 4 × 1015, 8 × 1015, 16 × 1015, and 32 × 1015 cm?2. The irradiated films were subjected to stepwise (30 min per step) vacuum annealing at 500, 600, 700, 800, and 900°C. After vacuum annealing, the samples irradiated to doses of 4 × 1015, 8 × 1015, and 16 × 1015 cm?2 exhibited partial recovery of their critical temperature, whereas the sample with a dose of 32 × 1015 cm?2 exhibited no signs of partial recovery of T C. Investigation of the irradiated annealed samples with the Umka nanotechnological complex has revealed damaged surface regions extended to a relatively large (several tenths of a micrometer) depth.  相似文献   

6.
TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag? ion with different doses (3?×?1014, 1?×?1015, 3?×?1015, 1?×?1016 and 3?×?1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV–visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3?×?1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.  相似文献   

7.
Abstract

ITC measurements, optical absorption spectra in the wavenumber range 5.4 × 104?200 cm?1, microspectrophotometry, photoluminescence spectra, optical and electron microscopy and X-ray diffraction have been used to study the growth and the nature of a new phase occlusions in LiF: Ti3+ and LiF: Mg2+, Ti3+. They grow along the 100 direction as a consequence of high temperature heat treatments in moist atmosphere.  相似文献   

8.
A. K. Nath  A. Kumar 《Ionics》2014,20(12):1711-1721
Swift heavy ion (SHI) irradiation has been used as a tool to enhance the electrochemical properties of ionic liquid-based nanocomposite polymer electrolytes dispersed with dedoped polyaniline (PAni) nanorods; 100 MeV Si9+ ions with four different fluences of 5?×?1010, 1?×?1011, 5?×?1011, and 1?×?1012 ions cm?2 have been used as SHI. XRD results depict that with increasing ion fluence, crystallinity decreases due to chain scission up to fluence of 5?×?1011 ions cm?2, and at higher fluence, crystallinity increases due to cross-linking of polymer chains. Ionic conductivity, electrochemical stability, and dielectric properties are enhanced with increasing ion fluence attaining maximum value at the fluence of 5?×?1011 ions cm?2 and subsequently decrease. Optimum ionic conductivity of 1.5?×?10?2 S cm?1 and electrochemical stability up to 6.3 V have been obtained at the fluence of 5?×?1011 ions cm?2. Ac conductivity studies show that ion conduction takes place through hopping of ions from one coordination site to the other. On SHI irradiation, amorphicity of the polymer matrix increases resulting in increased segmental motion which facilitates ion hopping leading to an increase in ionic conductivity. Thermogravimetric analysis (TGA) measurements show that SHI-irradiated nanocomposite polymer electrolytes are thermally stable up to 240–260 °C.  相似文献   

9.
SnO2 thin films grown on glass substrates at 300 °C by reactive thermal evaporation and annealed at 600 °C were irradiated by 120 MeV Ag9+ ions. Though irradiation is known to induce lattice disorder and suppression of crystallinity, we observe grain growth at a certain fluence of irradiation. X-ray diffraction (XRD) revealed the crystalline nature of the films. The particle size estimated by Scherrer’s formula for the irradiated films was in the range 10–25 nm. The crystallite size increases with increase in fluence up to 1×1012 ions?cm?2, whereas after that the size starts decreasing. Atomic force microscope (AFM) results showed the surface modification of nanostructures for films irradiated with fluences of 1×1011 ions?cm?2 to 1×1013 ions?cm?2. The UV–visible spectrum showed the band gap of the irradiated films in the range of 3.56 eV–3.95 eV. The resistivity decreases with fluence up to 5×1012 ions?cm?2 and starts increasing after that. Rutherford Backscattering (RBS) reveals the composition of the films and sputtering of ions due to irradiation at higher fluence.  相似文献   

10.
Radiation damage to the surfaces of lithium and barium sulfates and carbonates under 4 ke V Ar+ bombardment has been investigated by X-ray photoelectron Spectroscopy (XPS). Damage is readily observed at a dose of 1 × 1016 ions cm?2 with saturation occurring over the range 2–8 × 1017 ions cm?2. Both valence and core level XPS spectra indicate that, at the saturation dose, the basic sulfate and carbonate structures remain along with decomposition products. Both sulfur and carbon are preferentially lost from all four compounds and oxygen is preferentially lost from both Li compounds but not from the Ba compounds as a result of bombardment. The major decomposition products are the metal oxides with smaller quantities of carbides, sulfides, and SOnx?(n = 3,2,1) species.  相似文献   

11.
The present study is carried out for the investigation of energetic ion beam mixing in the Bi/Ge system, induced by electronic excitation. The system Ge/Bi/C was deposited on Si substrate at room temperature in the high vacuum deposition system and irradiated using Au ions of 120?MeV at the fluences 1?×?1013, 5?×?1013 and 1?×?1014?ions/cm2. The top layer of carbon was deposited as the protecting layer to avoid oxidation. The swift heavy ions (SHI)-induced interface mixing was studied by Rutherford backscattering spectroscopy (RBS) for depth profiles and compositions, grazing incidence X-ray diffraction (GIXRD) for phase identification and atomic force microscopy (AFM) for surface roughness. We have calculated the mixing rate, mixing efficiency and inter-diffusion coefficient for the Bi/Ge system. We observed that the thickness of the mixed region increased with increasing fluence. In the GIXRD pattern, no new crystalline phase formation was observed after irradiation, the mixed region may be in an amorphous form. The mixing effect is explained in the framework of the thermal spike model.  相似文献   

12.
ABSTRACT

Tungsten (W) has been regarded as one of the most promising plasma facing materials (PFMs) in fusion reactors. The formation of bubbles and blisters during hydrogen (H) irradiation will affect the properties of W. The dependence of implantation conditions, such as fluence and energy, is therefore of great interest. In this work, polycrystalline tungsten samples were separated into two groups for study. The thick samples were implanted by 18?keV H3+ ions to fluences of 1?×?1018, 1?×?1019 and 1?×?1020 H+/cm2, respectively. Another thick sample was also implanted by 80?keV H2+ ions to a fluence of 2?×?1017 H+/cm2 for comparison. Moreover, the thin samples were implanted by 18?keV H3+ ions to fluences of 9.38?×?1016, 1.88?×?1017 and 5.63?×?1017 H+/cm2, respectively. Focused ion beam (FIB) combined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for micro-structure analysis, while time-of-flight ion mass spectrometry (ToF-SIMS) was used to characterize the H depth profile. It is indicated that bubbles and blisters could form successively with increasing H+ fluence. H bubbles are formed at a fluence of ~5.63?×?1017 H+/cm2, and H blisters are formed at ~1?×?1019 H+/cm2 for 18?keV H3+ implantation. On the other hand, 80?keV H2+ ions can create more trapping sites in a shallow projected range, and thus enhancing the blisters formation with a relatively lower fluence of 2?×?1017?H+/cm2. The crack-like microstructures beneath the blisters are also observed and prefer to form on the deep side of the implanted range.  相似文献   

13.
Transparent polycarbonate samples were implanted with 1 MeV Ag+ ions to various doses ranging from 5 × 1014 to 3 × 1016 ions cm?2 with a beam current density of 900 nA cm?2. Modification in the structure of polycarbonate as a function of the implantation fluence was investigated using micro-Raman spectroscopy, glancing angle X-ray diffraction, and UV-Vis spectroscopy. Raman spectroscopy pointed toward the formation of graphite structures/clusters due to the ion implantation. UV-Vis absorption analysis suggests the formation of a carbonaceous layer and a drastic decrease in optical band gap from 4.12 eV to 0.50 eV at an implanted dose of 3 × 1016 ions cm?2. The correlation between the decrease in band gap and the structural changes is discussed.  相似文献   

14.
Response of Zr–2.5 wt.% Nb alloy pressure tube, used in PHWR nuclear reactors, to 315 keV Ar9+ ion irradiation at room temperature was investigated in the fluence range of 3.1?×?1015–4.17?×?1016 Ar9+?cm?2. Changes in microstructural parameters, viz., the size of coherently scattering domains, microstrain and dislocation density, upon irradiation were ascertained through grazing incidence X-ray diffraction. In general, a decrease in domain size was observed with fluence with a corresponding increase in microstrain and dislocation density. Residual stress measurement showed the development of compressive stresses in place of tensile after irradiation. Transmission electron microscopy showed the formation of dislocation loops of ?a?-type and ?c?-type during irradiation. The hardness of irradiated samples, probed through nanoindentation technique, was found to be higher in comparison with unirradiated samples. The above findings have been rationalised on the basis of the defects generated during the Ar9+ ion irradiation.  相似文献   

15.
(111)- and (100)-oriented Si samples were implanted with Si+ ions at 1 MeV to a dose of 1?×?1016?cm?2 and with 5?×?1016 He+ cm?2 at 10?keV or 50?keV and eventually annealed in the 800–1000°C temperature range. Sample characterisation was carried out by cross-section transmission electron microscopy, positron annihilation spectroscopy and nuclear reaction analysis. In addition to the formation of He bubbles at the projected range of He, bubbles were observed after solid-phase epitaxial growth (SPEG) of the embedded amorphous Si layer. The He threshold concentration required to obtain thermally stable bubbles in amorphised Si is between one and four orders of magnitude lower than in c-Si. Since bubble formation and growth take place in the a-Si phase, the interaction with SPEG during annealing was studied by considering (100) and (111) Si. Both the SPEG velocity and the resulting defects play a role on bubble spatial distribution and size, resulting in bigger bubbles in (111) Si with respect to (100) Si.  相似文献   

16.
Large crystal growths of the Eu2+-doped spatially coherent [KBr0.097I0.903](0.348):[KBr0.459Cl0.511I0.030](0.652) composite were characterized by X-ray diffraction and then studied by epifluorescence optical microscopy. Doping Eu2+ ions were observed to prefer sites located at certain linear structural singularities of the composite matrix to be segregated at. These singularities (2.1?×?107?singularities?cm?2), identified as crystal lattice dislocations, were found to be distributed within the composite matrix so that they form periodic arrays of linear structural singularities (1.8?×?104?singularities?cm?1). These arrays, identified as grain sub-boundaries, were found to envelope individual structural domains (1–5?µm in size) of either KBr0.459Cl0.511I0.030:Eu2+ or KBr0.097I0.903:Eu2+. These domains were found to aggregate among themselves to form the whole composite building. Small misfit angles (e.g. 7′?±?1′ and 10′?±?1′) characterize homo-phase structural domains while large misfit angles are characteristic of hetero-phase structural domains. Crystal lattice dislocations, forming the grain sub-boundaries, were found to present, as structural features, kinks and bifurcation points. The spatial configurations adopted by two of these features are carefully described.  相似文献   

17.
High-quality ZnO thin films were grown on a-plane sapphire substrates by plasma-assisted molecular beam epitaxy. X-ray diffraction and transmission electron microscopy reveal that the ZnO films have high structural quality and an atomically sharp ZnO/Al2O3 interface. The full width at half maximum values of the 0002 and $30\bar{3}2$ ZnO ω-rocking curves are 467.8 and 813.5 arc sec for a 600 nm thick ZnO film. A screw dislocation density of 4.35×108 cm?2 and an edge dislocation density of 3.38×109 cm?2 are estimated by X-ray diffraction. The surface of the ZnO epilayers contains hexagonal pits, which can be observed in the Zn-polar ZnO. The films have a resistivity of 0.119 Ω?cm, an electron concentration of 6.85×1017 cm?3, and a mobility of 76.5 cm2?V?1?s?1 at room temperature. Low temperature photoluminescence measurements show good optical properties comparable to ZnO single crystals.  相似文献   

18.
A simple technique for the study of the spatial distribution of the damage produced by ion implantation of silicon has been developed. The damage depth distribution for 40 keV boron ions in silicon has been studied at irradiation doses from 7 × 1011 to 3.9 × 1014 ions/cm2 and the relative defect peak depth R d/R p = 0.85 determined. An increase of layer conductivity as the surface part of the implanted layer is removed has been revealed. This effect is caused by the presence of radiation defects in the surface region of the layer. The “electrical” cluster diameter is about 28 A and the overlapping cluster dose is close to 1 × 1013 ions/cm2.  相似文献   

19.
The rate of transfer of electrons from O2 to O2+ and O3+ has been measured at energies ? 2 eV using a stored ion technique. The rate for O2+ is k = 1.0(0.3) × 10?9 cm3/s and for O3+, k = 2.5(0.3) × 10?9 cm3/s, compared to calculated Langevin rates of 1.8 × 10?9 cm3/s and 2.7 × 10?9 cm3/s respectively.  相似文献   

20.
A combination of X-ray diffraction, cross-sectional transmission electron microscopy (XTEM), and Raman spectroscopy was used to study the effects of irradiation with swift heavy ions on helium and hydrogen co-implanted silicon.<100>-oriented silicon wafers were co-implanted with 30 keV helium to a dose of 3×1016He+/cm2 and 24 keV protons to a dose of 2×1016 H+/cm2. Moreover, selected helium and hydrogen co-implanted Si wafers were irradiated with 94 MeV xenon. After He and H co-implantation and Xe-irradiation, the wafers were annealed at a temperature of 673 K for 30 min. The damage region of the wafers was examined by the XTEM analysis. The results reveal that most of the platelets are aligned parallel to the (100) plane in the He and H co-implanted Si. However, majority of the platelets lie in<texlscub>111</texlscub>planes after Xe irradiation. Blisters do not occur on the sample surface after Xe irradiation. Raman results reveal that the intensities of both SiH2 and V2H6 modes increase with the increase in the dose of Xe. A possible explanation is that strong electronic excitation during Xe irradiation produces annealing effect, which reduces both lattice damage and the out-of-plane tensile strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号