首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benefiting from the natural nano‐size graphene‐structure in natural asphaltene material, a facile one‐pot route, mild chemical oxidation of low‐value petroleum asphaltene followed by routine ammonium neutralization, is presented to produce high quality graphene quantum dots (GQDs). The asphaltene‐derived GQDs possess a variety of oxygen‐containing and nitrogen‐containing functional groups such as carboxyl, hydroxyl, amine, and nitro groups. They present such excellent fluorescence properties as stable ability to retain strong green fluorescence within a relative broad excitation range in a bio‐suitable pH range of 4–7, high photoluminescence quantum yield of 18% and good fluorescent stability against photobleaching. And they are much smaller and thinner than most reported GQDs, displaying good biocompatibility with low cytotoxicity, effective cellular uptake, and excellent fluorescent probe performance for cancer cell imaging.  相似文献   

2.
通过化学裁剪法打开碳纳米管获得了粒径一致、性能稳定、具有蓝色荧光的石墨烯量子点。该方法属于化学溶液法,具有成本低廉、工艺简单、条件易控等优势。将该样品与半导体聚合物按一定比例混溶,通过旋涂技术形成基于石墨烯量子点掺杂的聚合物复合薄膜,进而制成柔性存储器。该柔性可弯曲存储器具有低驱动电压、接近103的ON/OFF 比率、较好的循环次数,较好的重复性和稳定性。该研究结果为柔性有机存储器领域的研究展开了新的方向。  相似文献   

3.
采用原位聚合法制备了以ZnO量子点为核、石墨烯量子点(GQDs)为壳的ZnO@ GQDs核壳结构量子点。通过TEM和HR-TEM对量子点进行形貌和结构的分析表征。结果表明,合成的ZnO@ GQDs核壳结构量子点为球形,粒径为~7 nm,且尺寸均匀。PL光谱研究表明,新型量子点的发射峰位于369 nm,发光峰窄、强度高;相对于ZnO的本征发射峰,GQDs的引入使得ZnO@GQDs核壳量子点的荧光发射峰出现蓝移、强度变高,从而使复合量子点的荧光具有较纯的色度和较高的强度,说明GQDs的引入具有协同优化效应。该量子点有望应用于LED显示器件。  相似文献   

4.
It is of scientific importance to obtain graphene quantum dots (GQDs) with narrow‐size distribution in order to unveil their size‐dependent structural and optical properties, thereby further to explore the energy band diagram of GQDs. Here, a soft‐template microwave‐assisted hydrothermal method to prepare GQDs with diameters less than 5 nm ± 0.55 nm is reported. The size‐dependent photoluminescence (PL) quantum yield (QY) decay lifetime and electron energy loss spectroscopy (EELS) of the GQDs are studied systematically. The QY of the GQDs with an average diameter of 2 nm is the highest (15%) among all the samples investigated and the QY decreases with increasing diameter of the GQDs. The size‐dependence of the PL decay lifetime is also observed. The result suggests that spatial confinement effects related to radiative relaxation play an important role in the size‐dependent decay lifetime. A realistic energy band diagram of the GQDs is deduced from the experimental results.  相似文献   

5.
Zero‐dimensional photoluminescent (PL) graphene quantum dots (GQDs) that can be used as the cell‐imaging reagent are prepared by a hydrothermal route using the graphene oxide (GO) as the carbon source. Under the optimized hydrothermal conditions, an initial hydrogen peroxide concentration of 0.5 mg mL?1 at 180 °C for 120 min, the GO sheets can be cut into nanocrystals with lateral dimensions in the range of 1.5–5.5 nm and an average thickness of around 1.1 nm. The as‐prepared GQDs exhibit an abundance of hydrophilic hydroxy and carboxyl groups and emit bright blue luminescence with up‐conversion properties in a water solution at neutral pH. Most interestingly, they indicate excitation‐independent emission characteristics, and the surface state is demonstrated to have a key role in the PL properties. The fluorescence quantum yield of the GQDs is tested to be around 6.99% using quinine sulfate as a standard. In addition, the as‐prepared GQDs can enter into HeLa cells easily as a fluorescent imaging reagent without any further functionalization, indicating they are aqueous stability, biocompatibility, and promising for potential applications in biolabeling and solution state optoelectronics.  相似文献   

6.
An easy approach for large‐scale and low‐cost synthesis of photoluminescent (PL) graphene quantum dots (GQDs) based on the carbonization of commercially available polycyclic aromatic hydrocarbon (PAH) precursors with strong acid and followed by hydrothermal reduction with hydrazine hydrate is reported. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) characterizations indicate that the size and height of GQDs are in the range of 5–10 nm and 0.5–2.5 nm, respectively. PAH, which has more benzene rings, generally forms GQDs with relatively larger size. The GQDs show high water solubility, tunable photoluminescence, low cytotoxicity, and good optical stability, which makes them promising fluorescent probes for cellular imaging. In addition, the fluorescence of GQDs shows a sensitive and selective quenching effect to Fe3+ with a detection limit of 5 × 10?9m . By combination with the Fe2+/Fe3+ redox couple, the PL GQDs are able to detect oxidant, using H2O2 as an example. This study opens up new opportunities to make full use of GQDs because of their facile availability, cost‐effective productivity, and robust functionality.  相似文献   

7.
The electronic structure of graphene nanoribbons (GNRs) and graphene quantum dots (GQDs) has been predicted to depend sensitively on the crystallographic orientation of their edges. However, direct observation of edge state for triangle graphene quantum dots (TGQDs) has not been verified experimentally. Here we explore, using the scanning tunneling spectroscopy (STS), the zigzag edged electronic property of varisized TGQDs. Predominantly zigzag-edged TGQDs exhibit edge-localized states with the energy splittings of about 0.2–0.3 V when its lateral dimension is less than 7 nm. The measured energy splittings agree with theoretical calculations, and show that these edge states originate from a hybridization effect of the substrate, and not from a magnetic splitting of the edge state.  相似文献   

8.
吴春霞  宋泽琳 《发光学报》2015,36(4):413-418
以还原氧化石墨烯为前驱体,采用一步水热法成功制备出了近似球状、分散性良好、尺寸均一的石墨烯量子点。通过傅立叶红外光谱(FTIR)、紫外-可见吸收光谱、荧光光谱等光学手段对样品的结构和光学性能进行了表征,结果显示制备的石墨烯量子点表面含有丰富的含氧官能团,在紫外区有很强的吸收,发射峰强而窄,表现出激发波长不依赖的荧光性能。研究结果表明石墨烯量子点可应用于Mn2+微量探测,石墨烯量子点的荧光强度会随着所加入的Mn2+浓度的增大而降低,在0~400μmol/L间的校准曲线呈线性相关。  相似文献   

9.
Despite the enormous interest in the properties of graphene and the potential of graphene nanostructures in electronic applications, the study of quantum-confined states in atomically well-defined graphene nanostructures remains an experimental challenge. Here, we study graphene quantum dots (GQDs) with well-defined edges in the zigzag direction, grown by chemical vapor deposition on an Ir(111) substrate by low-temperature scanning tunneling microscopy and spectroscopy. We measure the atomic structure and local density of states of individual GQDs as a function of their size and shape in the range from a couple of nanometers up to ca. 20 nm. The results can be quantitatively modeled by a relativistic wave equation and atomistic tight-binding calculations. The observed states are analogous to the solutions of the textbook "particle-in-a-box" problem applied to relativistic massless fermions.  相似文献   

10.
采用柠檬酸热解法制备了石墨烯量子点(GQDs),研究了非极性溶剂戊烷,极性溶剂乙醇、丙酮、乙二醇对GQDs荧光性质的影响。透射电子显微镜(TEM)和原子力显微镜(AFM)图像表明,制备的GQDs尺寸分布在2~12 nm(平均尺寸为4.9 nm),分散均匀,高度分布在0.5~2 nm。吸收光谱表明,GQDs具有明显的紫外吸收特性,吸收峰位于259 nm和274 nm。光致发光谱表明,GQDs的发光具有明显的溶剂依赖性。GQDs在极性溶剂乙醇、丙酮、乙二醇中,发光峰的位置依赖于激发波长,发射波长在可见光区。而在非极性溶剂戊烷中,GQDs表现出对激发波长不依赖的荧光性能,且发射波长在近紫外。  相似文献   

11.
Cathodoluminescence (CL) has been studied in graphene quantum dots (GQDs) by varying their average size (d) from 5 to 35 nm. The size dependence of CL peak wavelength is very analogous to that of photoluminescence (PL) peak wavelength unusually showing non-monotonic behaviors having a maximum at d = ∼17 nm. The CL behaviors can therefore be attributed to the novel feature of GQDs, i.e., the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at d = ∼17 nm as d increases. However, the peak wavelengths of CL are especially much smaller than those of PL at both ends in the size range of GQDs, possibly resulting from the recombination of the electron-beam-excited e-h pairs at higher energy states before thermalization due to fast carrier-carrier scattering dominating over electron-phonon scattering in graphene.  相似文献   

12.
Various sizes of graphene quantum dots (GQDs) denoted as GQD2, GQD6 and GQD10 (increasing in size) were non-covalently attached to 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine (ZnTPPcQ) to form GQDs-ZnTPPcQ nanoconjugates. X-ray photoelectron spectroscopy (XPS) showed that increasing sizes of GQDs decreases the atomic concentrations of oxygen, which leads to blue shift in spectra of the GQDs. Relative to Pcs alone (0.03), the presence of GQDs improved the singlet oxygen quantum yields with the following values: GQD2-ZnTPPcQ (0.17), GQD6-ZnTPPcQ (0.27) and GQD10-ZnTPPcQ (0.11). GQD2-ZnTPPcQ nanoconjugate system had the most ZnTPPcQ loading, but did not generate the most singlet oxygen species due to aggregation. This study shows that, the quantity of oxygen, size and quality of GQDs as well as amount of Pc loading are amongst the vital properties to consider when constructing GQD-nanoconjugate systems with optimal singlet oxygen quantum yields.  相似文献   

13.
This paper reports a facile fabrication of N‐doped graphene quantum dots (N‐GQDs) showing controllable chemical properties through a hydrothermal treatment. The N‐GQDs have a uniform size of 3.06 ± 0.78 nm and prefer the equilibrium shapes of circle and ellipse due to the minimization of edge free energy. The N/C atomic ratio in N‐GQDs can be precisely tailored in a range from 8.3 at% to 15.8 at% by simply controlling the concentration of N source (ammonium hydroxide). One order of magnitude quantum yield of 34.5% is achieved by N‐GQDs, compared with the N‐free GQDs, as the substitutional N has an essential role in more effective radiative emission. Excessive N dopants in N‐GQDs can lead to photoluminescence quenching, through nonradiative transition back to the ground state. The N‐GQDs are further found to be suitable as photocurrent conversion materials due to benign energy matching with anatase nanofibers, the ultrafast electron injection at their interface, and efficient electron transfer. This work provides an efficient and inspiring approach to engineering both chemical components and physical properties of N‐GQDs, and will therefore promote their basic research and applications in energy conversion.  相似文献   

14.
Graphene quantum dots (GQDs) not only have potential applications on spin qubit, but also serve as essential platforms to study the fundamental properties of Dirac fermions, such as Klein tunneling and Berry phase. By now, the study of quantum confinement in GQDs still attract much attention in condensed matter physics. In this article, we review the experimental progresses on quantum confinement in GQDs mainly by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Here, the GQDs are divided into Klein GQDs, bound-state GQDs and edge-terminated GQDs according to their different confinement strength. Based on the realization of quasi-bound states in Klein GQDs, external perpendicular magnetic field is utilized as a manipulation approach to trigger and control the novel properties by tuning Berry phase and electron–electron (e–e) interaction. The tip-induced edge-free GQDs can serve as an intuitive mean to explore the broken symmetry states at nanoscale and single-electron accuracy, which are expected to be used in studying physical properties of different two-dimensional materials. Moreover, high-spin magnetic ground states are successfully introduced in edge-terminated GQDs by designing and synthesizing triangulene zigzag nanographenes.  相似文献   

15.
A one‐pot method is described for the preparation of graphene quantum dots/graphene oxide (GQDs/GO) hybrid composites with emission in the visible region, through heteroatom doping and hydroxyl‐radical‐induced decomposition of GO. The NH4OH‐ and thiourea‐mediated dissociation of H2O2 produces hydroxyl radicals. Treatment of GO with hydroxyl radicals results in the production of small‐sized GO sheets and GQDs, which self‐assemble to form GQDs/GO through strong π–π interactions. For example, the reaction of GO with a mixture of NH4OH and H2O2 for 40, 120, and 270 min generates yellow‐emitting GQDs/GO (Y‐GQDs/GO), green‐emitting GQDs/GO, and blue‐emitting GQDs, while red‐emitting GQDs/GO (R‐GQDs/GO) are prepared by incubating GO with a mixture of thiourea and H2O2. From the analysis of these four GQD‐based nanomaterials by transmission electron microscopy, atomic force microscopy, and fluorescence lifetime spectroscopy, it is found that this tunable fluorescence wavelength results from the differences in particle size. All four GQD‐based nanomaterials exhibit moderate quantum yields (1–10%), nanosecond fluorescence lifetimes, and excitation‐independent emissions. Except for R‐GQDs/GO, the other three GQD‐based nanomaterials are stable in a high‐concentration salt solution (e.g., 1.6 m NaCl) and under high‐power irradiation, enabling the sensitive (high‐temperature resolution and large activation energy) and reversible detection of temperature change. It is further demonstrated that Y‐GQD/GO can be used to image HeLa cells.  相似文献   

16.
采用水热法制备了石墨烯量子点(GQDs)可饱和吸收体(SA)。对GQDs SA的光学特性进行表征,估算出其调制深度为6.9%。将GQDs作为SA应用于二极管端面泵浦Nd∶YVO4激光器,实现了1063.5 nm处的被动调Q激光输出。在吸收泵浦功率为9.12 W时,输出脉冲的重复频率为1.64 MHz,脉冲宽度为200 ns,对应的脉冲能量为0.51μJ,峰值功率为2.5 W。  相似文献   

17.
为研究掺杂石墨烯量子点(GQDs)对聚合物电池的影响,采用溶剂热法制备了GQDs,掺杂到聚3-己基噻吩和富勒烯衍生物(P3HT∶PCBM)中作光敏层制备了聚合物太阳能电池。掺杂不同浓度的GQDs后,聚合物电池的开路电压和填充因子都比未掺杂器件高。GQDs掺杂质量分数为0.15%时,形成的掺杂薄膜平整、均匀,填充因子提高了17.42%。GQDs经还原后,随还原时间的延长,填充因子FF增大。到45 min时,电池的FF基本稳定,从31.57%提高至40.80%,提高了29.24%。退火后,获得了最佳的掺杂GQDs的聚合物太阳能电池,开路电压Voc为0.54 V,填充因子FF为55.56%,光电转换效率为0.75%。  相似文献   

18.
石墨烯作为一种新型非线性光学材料,在光子学领域具有重要的应用前景,引起研究人员的极大兴趣.本文运用量子化学计算方法研究了边界引入碳碳双键(C=C)和掺杂环硼氮烷(B3N3)环对石墨烯量子点非线性光学性质和紫外-可见吸收光谱的影响.研究发现,扶手椅边界上引入C=C双键后,六角形石墨烯量子点分子结构对称性降低,电荷分布对称性发生破缺,导致分子二阶非线性光学活性增强.石墨烯量子点在从扶手椅型边界向锯齿型边界过渡的过程中,随着边界C=C双键数目的增加,六角形石墨烯量子点和B3N3掺杂六角形石墨烯量子点的极化率和第二超极化率分别呈线性增加.此外,边界对石墨烯量子点的吸收光谱也有重要影响.无论是石墨烯量子点还是B3N3掺杂石墨烯量子点,扶手椅型边界上引入C=C双键导致最高占据分子轨道能级升高,最低未占分子轨道能级的降低,前线分子轨道能级差减小,因而最大吸收波长发生了红移.中心掺杂B3N3环后会增大石墨烯量子点的分子前线轨道能级差,导致B3N3掺杂后的石墨烯量子点紫外-可见吸收光谱发生蓝移.本文研究为边界修饰调控石墨烯量子点非线性光学响应提供了一定的理论指导.  相似文献   

19.
Graphene quantum dots (GQDs) are nanometer‐sized fragments of graphene that show unique properties, which makes them interesting candidates for a whole range of new applications. This review article gives an overview of the synthesis, properties and applications of GQDs. Synthesis methods discussed include top‐down and bottom‐up approaches. Properties such as luminescence up‐ and down‐conversion have been used in applications ranging from energy conversion to bio‐analytics. This article provides an overview of the state‐of‐the‐art and highlights promising findings as well as potential future directions of the research field.  相似文献   

20.
马红燕  王艳妮 《发光学报》2016,37(2):230-236
通过高温裂解柠檬酸合成了水溶性石墨烯量子点(GQDs),并应用钝化剂PEG2000进行修饰,提高了GQDs的量子产率。应用荧光光谱、紫外-可见光谱、红外光谱对其发光特性进行了研究,测定了荧光寿命。实验发现,在p H=7.40的Tris-HCl缓冲液中,肾上腺色腙(CBZC)对GQDs荧光强度有明显的猝灭作用。基于此提出了以GQDs为探针测定肾上腺色腙的新方法。实验考察了缓冲溶液用量、缓冲溶液种类、量子点浓度、反应时间以及表面活性剂等多种因素对反应体系的影响。当量子点浓度为2.3×10-3mol/L时,肾上腺色腙浓度在4.0×10-7~1.2×10-5mol/L(0.995 6)范围内与荧光猝灭值ΔF呈良好的线性关系,方法检出限为1.5×10-7mol/L,相对标准偏差为0.15%(n=5,c=4.0×10-6mol/L)。该方法对于样品中肾上腺色腙含量测定的回收率为97.46%~101.6%。通过测定温度对猝灭常数的影响以及紫外-可见吸收光谱的变化确定了二者的猝灭过程和相互作用力类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号