首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Magnesium tetraborate (MTB) doped with rare earth elements were synthesized by solid state sintering technique. Among the different rare earth dopants studied in this phosphor, gadolinium doped phosphors resulted in a single intense dosimetric peak at 250 °C and this is the first report in rare earth-doped MgB4O7 with a glow peak above 200 °C Photoluminescence (PL) and thermoluminescence (TL) studies were performed with this phosphor after exposing the powder samples to ionizing radiation. Monovalent dopants, including Na, Li and Ag, were found to increase the TL sensitivity of the MgB4O7:Gd phosphor without a shift in the TL peak temperature. The TL emission spectra showed characteristic emission of the host lattice, which showed an increase on doping with rare earth or monovalent codopants. The TL sensitivity, dose response curve, and post-irradiation storage stability were studied for the possible use of this material in radiation dosimetry applications. The TL parameters, such as the activation energy, the frequency factor, and the order of kinetics were determined for the Gd-doped MgB4O7 phosphor. The phosphor was found to be reusable after a few cycles of irradiation and annealing. The post-irradiation storage stability studies showed that this near tissue-equivalent phosphor, which has a gamma sensitivity five times that of TLD-100, is suitable for medical dosimetry applications.  相似文献   

2.
Radioluminescence at room temperature and thermoluminescence (TL) measurements of single-doped and codoped LiNaSO4 above room temperature are reported here. The codoped samples were studied to investigate the possibility of enhancing the TL sensitivity of LiNaSO4:Eu. This objective was not satisfied and the codopants (Ce, Sm, Ho and Er) decrease the TL sensitivity and slightly shift the dosimetric peak to lower temperatures. Samples doped with Mg, K, Bi and Tl were used with the hope that they may alter the trapping centers stability and introduce new peaks in the temperature range 430–500 K to observe any TL discontinuity or wavelength shift in their spectra as observed in CL measurements. This objective was fulfilled with Tl and Bi, where there is a discontinuity and/or wavelength shift at about 460 K. Such intensity and/or wavelength variations are ascribed to microstructural phase changes within the LiNaSO4 crystals that may result from twin boundaries behaving like Na2SO4.  相似文献   

3.
Magnesium tetra borate (MTB) doped with rare earths (REs) was prepared by the solid state sintering technique. Among the different RE dopants studied in this phosphor, gadolinium-doped phosphors resulted in a dosimetric peak at a relatively higher temperature. The thermoluminescence (TL) emission spectra of RE-doped MTB showed characteristic RE 3+ emissions. Electron paramagnetic resonance measurements were carried out in these phosphors to identify the defect centers formed during gamma irradiation and to establish a mechanism for the TL process. Signals corresponding to (BO 3)2?, O v? were seen upon irradiation which vanished on annealing at 250 °C, showing the role of these centers in the TL process. The thermal activation energies calculated based on the decay of these signals matched well with those calculated on the basis of the usual conventional method showing the validity of the mechanism of TL.  相似文献   

4.
Several glass ceramic compositions dispersed with Ga2O3 nanocrystals, in the series samples (100???x)[0.4Li2O–0.1TiO2–0.5P2O5]?+?xGa2O3 with x?=?0, 2, 4, 6, 8, and 10?mol% of Ga2O3 were synthesized via high-energy ball milling technique and labeled as lithium gallium titanate phosphate glass (LTPG x ) (x is the mol% of Ga2O3 nanocrystals). The compositions have been selected on the basis of thermal stability data obtained from differential thermal analysis. X-ray diffraction studies indicate nanocrystalline phase formation in the controlled crystallized glasses. The variation of electrical conductivity was explained in the light of growth of nanocrystalline phases. The best bulk conductivity (σ?=?7.03?×?10?4?S?cm?1, at 303?K) was achieved by the sample containing 8?mol% of Ga2O3 nanocrystals content, labeled as LTPG8 sample. The activation energy for conduction (Ea σ ) is obtained from the temperature dependent of conductivity data, which is fitted to Arrhenius equation. The single super curve in the scaling spectra suggested the temperature-independent relaxation phenomenon.  相似文献   

5.
Thermoluminescence (TL) mechanisms of neutron-irradiated α-Al2O3 at 20 K is reported. The TL glow curves of neutron-irradiated and γ-ray-irradiated α-Al2O3 were observed. The TL emission bands near 340, 430, 530 and 694 nm were observed in the neutron-irradiated α-Al2O3. The γ-ray-irradiated α-Al2O3 only showed the TL emission line nearly at 694 nm, corresponding to the R lines of α-Al2O3:Cr3+. Therefore, the first three emission bands are related to the atomic displacement defects as F-type centers caused by neutron irradiation.  相似文献   

6.
Copper-doped Na21(SO4)7F6Cl phosphor was synthesized via the conventional wet chemical method. The synthesis was carried using CuCl2 and Cu (NO3)2·3H2O as dopants in two different steps successively. The formation and phase purity of the compound were revealed by the X-ray diffraction pattern. Functional groups of the prepared phosphor were observed in the FT–IR spectrum. The emission along with excitation spectra were followed to explore the luminescence attributes. Photoluminescence (PL) emission spectrum of the material synthesized using CuCl2 as the dopant was observed at 358?nm due to 3dl0?3d94s transitions when excited around 247?nm for various copper concentrations. Efficient blue emissions were obtained at peaks 423 and 469?nm for materials synthesized using Cu (NO3)2·3H2O as the dopant, when monitored at 357?nm excitation. The Commission Internationale de I’Eclairage chromaticity coordinates for different copper concentrations were calculated for the emission around 423?nm. TL glow curves of Na21(SO4)7F6Cl:Cu phosphor for different dopant concentrations, irradiated with 100?Gy gamma dose, were studied and hence the trap parameters, namely order of kinetics (b), activation energy (E) and frequency factor (s) associated with the most intensive glow peak of Na21(SO4)7F6Cl:Cu phosphor were determined by using Chen’s Peak shape method. The results indicate that Na21(SO4)7F6Cl:Cu+ is a potential novel blue-emitting lamp phosphor and may be quite suitable for use in dosimetry of ionizing radiations.  相似文献   

7.
α-Al2O3:C晶体的热释光和光释光特性   总被引:1,自引:0,他引:1       下载免费PDF全文
杨新波  李红军  徐军  程艳  苏良碧  唐强 《物理学报》2008,57(12):7900-7905
以高纯α-Al2O3和石墨为原料,采用温梯法生长了α-Al2O3:C晶体,使用Ris TL/OSL-DA-15型热释光和光释光仪研究了其热释光和光释光特性.α-Al2O3:C晶体在462K附近有单一热释光峰,发射波长位于410nm.随着辐照剂量的增加,热释光强度逐渐增强,462K的热释光特征峰位置保持不变.α-Al2O3:C晶体的 关键词: 2O3:C')" href="#">α-Al2O3:C 热释光 光释光  相似文献   

8.
According to standard delocalized kinetic models of thermoluminescence (TL), when an irradiated sample is held at a high temperature T, the isothermal TL signal will decay with a characteristic thermal decay constant λ which depends strongly on the temperature T. This prediction of standard delocalized kinetic theory is investigated in this paper by studying two TL dosimeters, MgB4O7:Dy, Na and LiB4O7:Cu, In (hereafter MBO and LBO correspondingly). In the case of LBO it was found that the thermal decay constant λ of the main dosimetric TL peak follows exactly the predictions of standard delocalized kinetic theory. Furthermore, the thermal activation energy of the main peak evaluated by the isothermal decay method is in full agreement with values obtained from initial rise and glow curve fitting methods. However, in the case of MBO it was found that the thermal decay constant λ varies little with the isothermal decay temperature T. In order to explain these unusual results for MBO, the TL glow curves and isothermal decay curves were analyzed using analytical expressions derived recently from a radiative tunneling recombination model. Based on the different behavior of the two TL dosimeters, it is suggested that the isothermal decay of TL at high temperatures can be used to discriminate between radiative delocalized recombination and radiative localized recombination processes.  相似文献   

9.
10.
E. A. Mohamed 《Phase Transitions》2017,90(12):1179-1192
Glasses with the composition, [(100-x)TeO2- x(SrO–Bi2O3–Nb2O5)] with x = 20, 30 and 40 (in mol %) were prepared. The X-ray diffraction (XRD) pattern and differential thermal analysis (DTA) for the as-prepared samples confirmed the amorphous and glassy characteristics, respectively. The SrBi2Nb2O9 phase in tellurite glass for HT773 sample at x = 40 mol % is formed and confirmed by the Rietveld refinement. DTA curves for all glass samples exhibit two endothermic dips while the two broad exothermic peaks at lower x reduced to one at higher x. Infrared (IR) results revealed that the glassy matrix are composed of TeO3, TeO3+1, TeO4, BiO6 and NbO6 structural units. The changes in the density (ρ), molar volume (Vm), oxygen molar volume (V0) and oxygen packing fraction (OPD) have correlated with structural changes in the glass network. The optical studies show an absorption bands below the absorption edge in the glass samples.  相似文献   

11.
Studies on (Y1 - xLa X )Ba2Cu3O7, x = 0.0 - 1.0, in steps of 0.1, have been carried out. Results show that for x ≤ 0.4, orthorhombicity and high Tc of 90 K are retained. Tc decreases gradually for x ≥ 0.4. Pure LaBa2Cu3O7 shows a TC ZERO of 73 K. XRD data do not reveal any clearcut orthorhombic distortion for pure LaBa2CuO7 after annealing at 350°C for 4 days.  相似文献   

12.
A series of Sr2MgSi2O7:xCe3+ (x?=?1.0%, 2.0%, 3.0%, 4.0% and 5.0%) phosphors were synthesized by the solid-state reaction method. The phosphor with optimum thermoluminescence, photoluminescence and mechanoluminescence (ML) intensity was characterized by X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared techniques. The trapping parameters (i.e. activation energy, frequency factor and order of the kinetics) of each synthesized phosphor have been calculated using the peak shape method and the results have been discussed. Under ultraviolet excitation (325?nm), Sr2MgSi2O7:xCe3+ phosphors were composed of a broad band peaking at 385?nm, belonging to the broad emission band which emits violet-blue color. Commission International de I’Eclairage coordinates have been calculated for each sample and their overall emission is near violet-blue light. In order to investigate the suitability of the samples for industrial uses, color purity and color rendering index were calculated. An ML intensity of optimum [Sr2MgSi2O7:Ce3+ (3.0%)] phosphor increases linearly with increasing impact velocity of the moving piston which suggests that these phosphors can be used as fracto-ML-based devices. The time of the peak ML intensity and the decay rate did not change significantly with respect to increasing impact velocity of the moving piston.  相似文献   

13.
Abstract

Thermo- and photostimulated processes are studied in reduced hydrogen containing α-Al2O3 excited by UV light. It is found that UV excitation in F absorption band at 90 K results in a ionization of the F-centers and capture of released electrons at defects thus producing an anisotropy absorption band at 4.2 eV and the dominant thermoluminescence (TL) peak at 260 K. The 260 K TSL peak is accompanied by complete bleaching of the 4.2 eV absorption band and vice versa—by light stimulation in the region of the 4.2 eV band the 260 K TSL peak disappear and released electrons recombine with F+-centers. Both the effect of the preliminary high-temperature thermal treatment of samples on formation of 4.2 eV-centers and the observed dichroism characteristics allows to conclude that corresponding complex defect contains hydrogen and can involve vacancy pair.  相似文献   

14.
A new OSL phosphor CaSO4:Eu was developed. The phosphor shows good OSL sensitivity which is about 55% of commercially available Al2O3:C. The phosphor also shows good TL sensitivity and the dosimetric peak, which appears around 186 °C, has sensitivity nearly 50% of Al2O3:C. After OSL readout of the irradiated sample, the TL peak around 250 °C depletes completely, with partial depletion of peak around 186 °C. Since the traps responsible for the high temperature peak are involved for the observed OSL, the sample shows low post-irradiation fading. The OSL decay is similar to Al2O3:C. Thus this phosphor due to its good OSL sensitivity, linear dose response, low fading and simple preparation technique could be useful for radiation dosimetry applications.  相似文献   

15.
We fabricated nano-carbon (NC) doped MgB2 bulks using an in situ process in order to improve the critical current density (Jc) under a high magnetic field and evaluated the correlated effects of the doped carbon content and sintering temperature on the phase formation, microstructure and critical properties. MgB2−xCx bulks with x = 0 and 0.05 were fabricated by pressing the powder into pellets and sintering at 800 °C, 900 °C, or 1000 °C for 30 min.We observed that NC was an effective dopant for MgB2 and that part of it was incorporated into the MgB2 while the other part remained (undoped), which reduced the grain size. The actual C content was estimated to be 68–90% of the nominal content. The NC doped samples exhibited lower Tc values and better Jc(B) behavior than the undoped samples. The doped sample sintered at 900 °C showed the highest Jc value due to its high doping level, small amount of second phase, and fine grains. On the other hand, the Jc was decreased at a sintering temperature of 1000 °C as a result of the formation of MgB4 phase.  相似文献   

16.
采用脉冲激光沉积技术,在单晶SrTiO3基底上外延生长了一系列名义结构为p×(NdBa2Cu3O7-δ(m)/YBa2Cu3O7-δ(n))的多层膜和准多层膜(单元层NdBa2Cu3O7-δ较厚而YBa2Cu3O7-δ呈非连贯的岛状分布,m,n为激光脉冲数,p为重复周期).样品的超导转变温度在87—91 K范围,具体大小取决于不同的调制结构,多层膜的重复周期越大,层状界面越多,超导转变温度就越低.磁传输测量表明,准多层的样品不仅具有较高的超导转变温度,而且具有较强的磁通钉扎性能,77K零场下的临界电流密度高达4×106 A/cm2,显示出良好的应用前景. 关键词: 2Cu3O7-δ')" href="#">NdBa2Cu3O7-δ 多层膜 磁通钉扎 临界电流密度  相似文献   

17.
In this study, Li2BPO5 doped with Cu and that co-doped with Mg are synthesized by the wet chemical technique and exposed to γ rays of 60Co to determine their thermoluminescence (TL) properties. The X-ray diffraction technique shows the crystalline nature of the prepared material. The photoluminescence (PL) emission spectra of Li2BPO5:Cu phosphor show the strong prominent peak at 368 nm in the violet region of the visible spectrum due to the transition of 3d94s1 ? 3d10 of monovalent copper ion. The PL emission of Li2BPO5:Cu is enhanced by the addition of Mg. The TL glow curves of γ-irradiated Li2BPO5:Cu sample show one glow peak at 143°C, indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak of Li2BPO5:Cu are calculated using the glow curve shape (Chen's) method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. A linear TL response is observed in Li2BPO5:Cu in a long span of exposures. The sensitivity of Li2BPO5:Cu sample is observed to be 7.8 times that of (TLD-100) LiF:Mg, Ti.  相似文献   

18.
ABSTRACT

The blue phase of YBa2Cu3O7- δ (YBCO) family, Y2Cu2O5 (Y202) nanoparticles were prepared and doped into (YBCO) superconductor and the effect of doping on critical current density and critical temperature was investigated. Y202 nanoparticles with particle sizes of 47, 107 and 206?nm were prepared by a sol–gel combustion method and added into the YBCO superconductor by 0.5–2?wt.%. XRD and scanning electron microscope measurements were used to characterize the samples. The measurement of critical current density at 77?K revealed that the doped superconductors had larger critical current density compared to the undoped superconductors. For a fixed dopant concentration, by increasing the size of nanoparticles, the Jc was increased. For the samples including 0.5?wt.% of nanoadditives, Jc was higher. The highest critical current density of 137?A/cm2 was measured for the superconductors containing 0.5?wt.% of 206?nm Y202 nanoparticles. Also, by increasing the nanoparticles concentration, the Tc was reduced.  相似文献   

19.
Long persistent SrAl2O4:Eu2+ phosphors co-doped with Dy3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl2O4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl2O4:Eu2+, Dy3+ were observed and the emission is attributed to the 4f65d1 to 4f7 transition of Eu2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.  相似文献   

20.
MgB2 bulks were prepared by an in situ process which utilizes the reaction between boron and magnesium powder. The reaction time was fixed at 0.5 h and the temperature was changed from 600 °C to 1000 °C. The density decrease due to pore formation and mass (mainly magnesium) loss during the formation reaction of MgB2 was observed in all samples. In addition to the pore formation, a pellet expansion which can be explained by the outgrowth of MgB2 grains was also observed. Two different mechanisms were adopted to explain the pore formation; Kirkendall pores formed at a temperature below the melting point (m.p.) of magnesium by a difference in the diffusivity between magnesium and boron, and the pores formed at a temperature above the m.p. by melting of magnesium and a capillary movement. The density, Tc and Jc results suggest that the current carrying capacity can be improved by a careful control of the process parameters regarding a pore evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号