首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
ABSTRACT

In this paper, the radiation shielding parameters such as linear attenuation coefficients (LAC, µ), mass attenuation coefficients (MAC, µ/ρ), effective atomic numbers (Zeff), effective electron densities (Neff), half value of layers (HVL), mean free paths (MFP) and buildup factors (exposure (EBF) and energy absorption (EABF)) were investigated for cream (M1), pink (M2), white (M3), maroon (M4) and green (M5) marbles. Attenuation coefficients were measured in the energy region 31.18–661.66 keV photon energies. The values of Zeff and Neff were then calculated using these coefficients with logarithmic interpolation method, and HVLs and MFPs were calculated using the values of LAC of marble samples at the same photon energies. The experimental results were compared with the theoretical values obtained from WinXCom program, and good agreements were observed between the experimental and theoretical results. HVLs and MFPs of all marble samples were compared with those of some concretes, glasses and commercial radiation shielding glasses (SCHOTT Co.). The studied marbles were better radiation shielding materials than standard shielding concretes due to lower HVL and MFP values lower than the ordinary concrete. Finally, EBFs and EABFs of the marbles were calculated in the energy region 0.015–1?MeV up to penetration depths of 40 mfps by Geometric Progression method (G-P), and the results were discussed in terms of photon energies and chemical compositions of the marbles.  相似文献   

2.
The present work emphasizes on the transmission of gamma photons, having energies in the range (241.8–401.8 keV) obtained by Compton scattering technique, to determine mass-attenuation coefficients (μm), molar-extinction coefficients (ε), mass-energy absorption coefficient (μen/ρ), effective atomic number (Zeff), mean free path (MFP), half value layer (HVL), total atomic (σt.a) and electronic (σt.el) cross-sections, and Hounsfield number (H) of various organic compounds like Alcohols, Aldehydes, Ketones, Esters, Amines, Benzene compounds and Water, and further used as radiation shielding. The WinXcom software package is used to compare the experimentally deduced radiation interaction parameters with theory. The theoretical and experimental results are in good agreement within permissible experimental uncertainty. The radiation shielding parameters have been found to vary with gamma-ray energy and effective atomic number for these organic compounds under present investigations.  相似文献   

3.
The probability of gamma or X-ray interactions with important 14 antioxidants have been discussed for total photon interactions in the wide energy range of 1?keV–100?GeV using the WinXCOM code. The variations of mass attenuation coefficient (μρ), effective atomic number (Zeff) and electron density (Nel) with photon energy were plotted for total photon interactions. It was found that the values of μρ, Zeff and Nel depend on the incoming photon energy and chemical compositions of antioxidant. The highest values of these parameters were found at a low-energy zone where the photoelectric effect is the dominant interaction process. When antioxidants were compared with each other, it was seen that Zeff has the highest values for Oenin chloride and Delphinidin chloride which contain the Cl element. This investigation is thought to be useful for medical applications where radiation exposure is present.  相似文献   

4.
Radiation interaction parameters such as total stopping power, projected range (longitudinal and lateral) straggling, mass attenuation coefficient, effective atomic number (Zeff) and electron density (Neff) of some shielding materials were investigated for photon and heavy charged particle interactions. The ranges, stragglings and mass attenuation coefficients were calculated for the high-density polyethylene(HDPE), borated polyethylene (BPE), brick (common silica), concrete (regular), wood, water, stainless steel (304), aluminum (alloy 6061-O), lead and bismuth using SRIM Monte Carlo software and WinXCom program. In addition, effective atomic numbers (Zeff) and electron densities (Neff) of HDPE, BPE, brick (common silica), concrete (regular), wood, water, stainless steel (304) and aluminum (alloy 6061-O) were calculated in the energy region 10?keV–100?MeV using mass stopping powers and mass attenuation coefficients. Two different methods namely direct and interpolation procedures were used to calculate Zeff for comparison and significant differences were determined between the methods. Variations of the ranges, longitudinal and lateral stragglings of water, concrete and stainless steel (304) were compared with each other in the continuous kinetic energy region and discussed with respect to their Zeffs. Moreover, energy absorption buildup factors (EABF) and exposure buildup factors (EBF) of the materials were determined for gamma rays as well and were compared with each other for different photon energies and different mfps in the photon energy region 0.015–15?MeV.  相似文献   

5.
The effective atomic numbers (Z eff) and electron density (N el) of some hormones such as testosterone, methandienone, estradiol and rogesterone for total and partial photon interactions have been computed in the wide energy region 1 keV–100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. The computed Z eff and N el are compared with the values generated by XMuDat program. The computer tomography (CT) numbers and kerma values relative to air are also calculated and the computed data of CT numbers in the low-energy region help in visualizing the image of the biological samples and to obtain precise accuracy in treating the inhomogenity of them in medical radiology. In view of dosimetric interest, the photon absorbed dose rates of some commonly used gamma sources (Na-21, Cs-137, Mn-52, Co-60 and Na-22) are also estimated.  相似文献   

6.
ABSTRACT

Because of the high radiation dose in applications involving nuclear reactors, medical treatments etc., it is important to reduce the exposure to radiation of areas and workers. In this study, we were examined gamma ray shielding parameters of the newly produced Re-based superalloys. Mass attenuation coefficient (µ/ρ) of the alloys were obtained experimentally at 81, 276, 302, 356, 383 keV photon energies emitted from 133Ba radioactive source using Ultra Ge detector. The experimental results were compared with the values obtained by the WinXCOM program and were found to be in perfect agreement with each other. Additionally, effective atomic number (Zeff) and electron density (Neff) were determined for produced Rhenium (Re) based super alloys in the energy range 1 keV–100?GeV. S5 sample which has maximum Rhenium percentage own the largest µ/ρ and Zeff values. Moreover, by using Geometric Progression (GP) approximation, EABF and EBF were computed for the superalloys depending on the energy and penetration depths. It has been deduced that the values of EABF and EBF are minimum in the medium energy region. EBF and EABF values of the alloys have changed depending on the equivalent atomic number. Among alloy samples under study, S5 superalloy is the best for gamma ray shielding. However, in general, considering the radiation energies used in many applications, all the alloys under study have satisfactory radiation absorption properties.  相似文献   

7.
The gamma-ray shielding behaviour of a material can be investigated by determining its various interaction and energy-absorption parameters (such as mass attenuation coefficients, mass energy absorption coefficients, and corresponding effective atomic numbers and electron densities). Literature review indicates that the effective atomic number (Zeff) has been used as extensive parameters for evaluating the effects and defect in the chosen materials caused by ionising radiations (X-rays and gamma-rays). A computer program (Zeff-toolkit) has been designed for obtaining the mean value of effective atomic number calculated by three different methods. A good agreement between the results obtained with Zeff-toolkit, Auto_Zeff software and experimentally measured values of Zeff has been observed. Although the Zeff-toolkit is capable of computing effective atomic numbers for both photon interaction (Zeff,PI) and energy absorption (Zeff,En) using three methods in each. No similar computer program is available in the literature which simultaneously computes these parameters simultaneously. The computed parameters have been compared and correlated in the wide energy range (0.001–20?MeV) for 10 commonly used building materials. The prominent variations in these parameters with gamma-ray photon energy have been observed due to the dominance of various absorption and scattering phenomena. The mean values of two effective atomic numbers (Zeff,PI and Zeff,En) are equivalent at energies below 0.002?MeV and above 0.3?MeV, indicating the dominance of gamma-ray absorption (photoelectric and pair production) over scattering (Compton) at these energies. Conversely in the energy range 0.002–0.3?MeV, the Compton scattering of gamma-rays dominates the absorption. From the 10 chosen samples of building materials, 2 soils showed better shielding behaviour than did other 8 materials.  相似文献   

8.
The effective atomic number (Zeff) and effective electron density (Neff) of eight heavy metal oxide (HMO) glasses have been determined using the Monte Carlo simulation code MCNP for the energy range of 10?keV–10?MeV. The interpolation method was employed to extract Zeff and Neff values from the simulation and that calculated with the help of XCOM program. Comparisons are also made with predictions from the Auto-Zeff software in the same energy region. Wherever possible, the simulated values of Zeff and Neff are compared with experimental data. In general, a very good agreement was noticed. It was found that the Zeff and Neff vary with photon energy and do not have extended intermediate regions where Compton scattering is truly dominating; only dips slightly above ~1.5?MeV were recorded. Zeff and Neff are found to increase with PbO and Bi2O3 contents. It was found that the Zeff value rather than the Neff value is a better indicator for PbO and/or Bi2O3 contents.  相似文献   

9.
The matrix effect has a major impact on energy‐dispersive X‐ray fluorescence analysis (EDXRFA) and is difficult to be evaluated due to that the contents of some low‐atomic‐number elements cannot be identified by in‐situ EDXRFA. Up to today, the fundamental parameter algorithm proposed by Rousseau has been widely applied to correct the matrix effect. Accordingly, determining the matrix and mass attenuation coefficient (μ/ρ) of sample is a key issue for the fundamental parameter algorithm. In present work, the method to deduce μ/ρ by effective atomic number (Zeff) was studied. First, the relationship between Zeff and coherence to Compton scatting ratio (R) of the incident X‐ray was determined by standard samples. Then, we deduce Zeff and their μ/ρ. The value of μ/ρ deduced by our method is in good agreement with that calculated by WinXCOM, and the relative change (Δ) is less than 7%. We also deduced Zeff and their μ/ρ of Chinese national standard soil samples employing our method and good agreement with the calculated values were also obtained. We found that the agreement between experimental values of μ/ρ with theoretical values by WinXCOM still exists when the energy of the incident X‐ray is greater than 4 keV, and the Δ is less than 10%. The result indicates that our method may be applied directly to in‐situ EDXRFA.  相似文献   

10.
In this work, we examined the usefulness of the WCx/Al100?x composites (x?=?10, 20, 50, 80 wt. %) for gamma-ray shielding materials. The mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), electron density (Ne) and energy absorption buildup factor (EABF) and exposure buildup factor (EBF) for WCx/Al100?x composites have been calculated by theoretical approach using XCOM program within the energy range 1?keV–100?GeV, 10 keV–1?GeV, 10 keV–1?GeV and 0.015?MeV–15?MeV, respectively. The results showed that both the values of mass attenuation coefficient and Zeff of the WCx/Al100?x composites tend to increase with the increase of the WC concentration. For the energy region below 3?MeV, the WC80/Al20 composite was found to possess superior gamma-ray shielding effectiveness due to its higher values of both mass attenuation coefficient and effective atomic number, and lower values of both EABF and EBF values. However, for the energy region above 3?MeV, the EBF and EABF values of the WC/Al composites are directly proportional to their Zeff values, leading to the lowest EBF and EABF values of the WC10/Al90 composites.  相似文献   

11.
Rapid technological advancement has multiplied people’s exposure to ionizing radiations greatly. Widespread applications of radiation in different fields (such as agriculture, radiation therapy and scientific research fields) require that humans be protected against unnecessary exposure. In this study, mass attenuation coefficient (μm), half-value layer, mean-free path, effective atomic number (Zeff) and exposure buildup factor have been calculated for xBaO–20ZnO–(80???x)B2O3 (x?=?5, 10, 15, 20 and 25?mol%) glass systems. The mass attenuation coefficients of the selected glasses were calculated using simulation method of MCNP5 code. The simulation results have been compared with the experimental data and Xcom at the energies 223.02, 252.98, 287.28, 340.83, 398.97, 481.59, 562.68 and 662.00?keV. The agreement amounts of the mass attenuation coefficient values are from 0.2% to 2.8% and from 0.2% to 6.98% for MCNP5 and Xcom relative to experimental results, while the Monte Carlo program values are higher than that obtained by experimental data, using Xcom and MCNP5 code. The glass sample having the highest value of BaO content show high radiation shielding properties. It indicates that the MCNP5 code can be used for estimation of radiation interaction parameters where experimental results are not available.  相似文献   

12.
The objective of this work is focused on development of a classification tool for identifying soil texture based on photon attenuation interaction atomic cross‐section data. The total mass attenuation coefficients (μ/ρ) and the atomic cross sections (σa) of soils with different textures have been calculated for total photon interactions in a wide energy range (1 keV to 100 GeV). The values of these parameters have been found to change with soil composition in low energies (1–100 keV), whereas their behavior has been found to be similar at all energies. Slight differences were observed in σa in the energy range of 0.01 to 10 MeV and more pronounced ones from 10 MeV to 100 GeV. Regarding μ/ρ, only small differences were observed among soils for all the energy range investigated. Differences between μ/ρ and σa considering different proportions of Fe2O3 and SiO2 were also observed. The reported data should be useful for studying soil texture according photo attenuation. The results of this work can stimulate research for all types of soil texture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The effective atomic number (Zeff) and electron density (Nel) of hydroxyapatite (HA) and cortical bone have been computed for total photon interaction in the wide energy range of 1 keV–100 GeV using WinXCom. The variations of effective atomic number and electron density with energy of HA are compared with that of cortical bone. GP. fitting method has been used to compute energy absorption and exposure build-up factor of HA for wide energy range (0.015 MeV–15 MeV) up to the penetration depth of 40mean free path. The computed absorption build-up factor is used to estimate specific absorbed fraction of energy (Ф) and relative dose of photon in HA. Build-up factor increases with increase of penetration depth. The results of the present paper will also help in estimating safe dose levels for radiotherapy patients and also will be useful in dosimetry and diagnostics.  相似文献   

14.
Pure magnesium ferrite sample was prepared by standard ceramic technique and characterized by X-ray diffraction method. XRD pattern revealed that the sample possess single-phase cubic spinel structure. The linear attenuation coefficient (μ), mass attenuation coefficient (μ/ρ), total atomic cross-section (σ tot), total electronic cross-section (σ ele) and the effective atomic number (Z eff) were calculated for pure magnesium ferrite (MgFe2O4). The values of γ-ray mass attenuation coefficient were obtained using a NaI energy selective scintillation counter with radioactive γ-ray sources having energy 0.36, 0.511, 0.662, 1.17 and 1.28 MeV. The experimentally obtained values of μ/ρ and Z eff agreed fairly well with those obtained theoretically.   相似文献   

15.
The backscattered peak and albedos are important for the estimation of exposure distribution and for better understanding the phenomenon of the backscattering of gamma photons. To characterize the backscattering probability of gamma photons interacting with different atomic numbers (Z), number (A N), energy (A E) and dose (A D) albedos are experimentally evaluated. The response function converts the observed pulse-height distribution of a NaI(Tl) scintillation detector to a true photon spectrum. For each of the incident gamma photon energies, the number and energy albedos show an increase with the increasing target thickness, and finally saturate. The energy albedos are found to be decreasing with the increase in the atomic number of the target material and incident gamma photon energy. The dose albedos do not differ significantly from the energy albedos for the chosen incident gamma photon energies.  相似文献   

16.
ABSTRACT

The present research focused on the investigation of photon and fast neutron shielding parameters of colemanite mineral doped and undoped concretes. The fabricated concretes have been exposed to gamma rays at 59.5 and 81?keV energies and the measurements have been carried out with NaI(Tl) detector. The parameters of effective atomic number (Zeff) and electron density (Nel) have been determined experimentally and theoretically. The exposure buildup factor (EBF) and energy absorption buildup factor (EBF) have been computed utilizing the Geometric progression (G–P) fitting method. In addition to the photon shielding parameters, the macroscopic effective removal cross-section calculations for fast neutron (ΣR) were performed. As a result, it was observed that the concretes doped with colemanite mineral are not very effective in gamma radiation shielding. On the contrary, it was observed that concretes with colemanite were more effective in shielding fast neutrons and the fast neutron removal cross-section values increased with increasing colemanite concentration in the concrete. Additionally, compressive strength values (MPa) of concretes were tested using ALFA TESTING (B001-PC) 200 tons capacity device.  相似文献   

17.
The mass attenuation coefficients (μm) have been measured for undecylic acid (C11H22O2), lauric acid (C12H24O2), tridecylic acid (C13H26O2), myristic acid (C14H28O2), pentadecylic acid (C15H30O2) and palmitic acid (C16H32O2) using 57Co, 133Ba, 137Cs, 60Co and 22Na emitted γ radiation with energies 122, 356, 511, 662, 1170, 1275 and 1330 keV, respectively. The accurate values of the effective atomic number (Zeff), atomic cross-section (σt,), electronic cross-section (σe) and the effective electron density (Neff) have great significance in radiation protection and dosimetry. These quantities were obtained by utilizing experimentally measured values of mass attenuation coefficients (μm). A NaI(Tl) scintillation detector with 8.2% (at 662 keV) resolution was used for detecting of attenuated γ-photons. The variation in Zeff and Neff of fatty acids with energy is discussed. The experimental and theoretical results are in good agreement within 2% deviation.  相似文献   

18.
In this paper, we report a new method to determine the effective atomic number, Z eff, of composite materials for Compton effect in the γ-ray region 280–1115 keV based on the theoretically obtained Klein–Nishina scattering cross-sections in the angular range 50°–100° as well as a method to experimentally measure differential incoherent (Compton) scattering cross-sections in this angular range. The method was employed to evaluate Z eff for different inorganic compounds containing elements in the range Z = 1–56, at three scattering angles 60°, 80° and 100° at three incident gamma energies 279.1 keV, 661.6 keV and 1115.5 keV and we have verified this method to be an appropriate method. Interestingly, the Z eff values so obtained for the inorganic compounds were found to be equal to the total number of electrons present in the sample as given by the atomic number of the elements constituting the sample in accordance with the chemical formula of the sample. This was the case at all the three energies.  相似文献   

19.
The present work was carried out to find out the gamma ray shielding properties and to study the effects using an NaI (Tl) detector using radioactive sources 57Co, 133Ba, 137Cs, 54Mn, 60Co and 22Na at energies 122, 356, 511, 662, 840, 1170, 1275 and 1330?keV, for some chemicals, namely, sodium thiosulfate (Na2S2O3), benzoic acid (C7H6O2), sodium hydroxide (NaOH), poly vinyl alcohol (PVA) (C2H4O), potassium nitrate (KNO3), naphthalene (C10H8). Mass attenuation coefficient (µm) values obtained from the experiment were used to determine the effective atomic numbers (Zeff) and effective electron densities (Neff), atomic cross-sections (σt) and electronic cross-sections (σe); it will be observed from the present work that the variation in the obtained values is only due to the increase or decrease in the gamma ray energy and the chemical composition of the sample. It was seen that the calculated and obtained values showed good agreement. The investigated data are useful in the electronic industry, plastic industry, building materials and agriculture fields. From the present work it was found that the PVA could be used as a better gamma shielding material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号