首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The intrapair and interpair correlation energies of F-, HF and H2F^ systems are calculated and analyzed using MP2-OPT2 method of MELD program with cc-PVSZ^* basis set. From the analysis of pair correlation energies of these isoelectronlc sysoterns, it is found that the 1sF^2 pair correlation energy is trans-ferable in these three isociectronic systems. According to the definition of pair correlation contribution of one electron pair to a system, the pair correlation contribution values of these three systems are calculated. The correlation contribution values of inner electron pairs and H—F bonding electron pair in HF molecule with those in H2F^ system are compared. The results indicate that the bonding effect of a molecule is one of the im-portant factors to influence electron correlation energy of the system. The comparison of correlation energy contributions in-cluding triple and quadruple excitations with those only includ-ing singles and doubles calculated with 6-311 G(d) basis set shows that the higher.excitation correlation energy contribution gives more than 2 % of the total correlation energy for these sys-tems.  相似文献   

2.
The unsaturated germylenoid H2C=GeLiF has been studied by using DFT method at the B3LYP/6-311+G (d, p) level. Geometry optimization calculations indicate that H2C=GeLiF has three equilibrium configurations, in which the p-complex is the lowest in energy and the most stable structure. Two transition states for isomerization reactions of H2C=GeLiF are located and the energy barriers are calculated. For the most stable one, vibrational frequencies and infrared intensities have been predicted.  相似文献   

3.
The electronic structure of the perovskite LaCoO3 at room temperature structure (293 K) was calculated by using PBE, PBE+U and HSE. Different spin configurations have been considered. Our calculations showed that the choice of the Hubbard U parameter in DFT+U and mixing factor α in HSE significantly influenced the band gap as well as relative energies. For the spin exited states, the optimal value for U and α were 3.0 eV and 0.05, respectively. Our calculation also emphasized that when U〉5.0 eV, PBE+U would lead to unreasonable electronic structure and energy order.  相似文献   

4.
A series of 3. OMo/(Hβ γ-Al2O3) samples with γ-Al2O3 contents in the range of 0-100% (mass fraction) was studied by means of XRD, NH3-TPD, TPR and BET determinations for characterizing their structures. The Hβ zeolite structure in the 3.0Mo/Hβ sample can be effectively stabilized by adding some γ-Al2O3 to Hβ zeolite. γ-Al2O3 mainly favors the formation of polymolybdate or multilayered Mo oxide, while Hβ mainly forms the Al2(MoO4)3 species, as evaluated by the TPR technique. When used as the catalyst for the metathesis of butylene-2 and ethylene to propylene, there exists a close correlation between the specific surface area and stability of the catalyst. The specific surface area of the catalyst shows the maximum when (Hβ γ-Al2O3) contains 30%γ-Al2O3, which is in agreement with that of the time needed for the reaction stablization. In the case of maximum surface area, the rate of coke deposition is the minimum.  相似文献   

5.
Duan  Ping  Liu  Junyang  Wang  Jin-Yun  Qu  Kai  Cai  Shuning  Wang  Fei  Chen  Lichuan  Huang  Xiaoyan  Li  Ruihao  Shi  Jia  Zhang  Qian-Chong  Hong  Wenjing  Chen  Zhong-Ning 《中国科学:化学(英文版)》2020,63(4):467-474
Seeking the strategies of designing highly conductive molecular structures is one of the core researches in molecular electronics.As asymmetric structure has manifested feasible properties in comprehensive fields, we introduce the structures of asymmetric platinum(Ⅱ) complexes into the charge transport study at single-molecule scale for the first time. The single-molecule conductance measurement results reveal that, in platinum(Ⅱ)-aryloligoynyl structures, the conductance of asymmetrically coordinated complexes is obviously higher than that of the symmetric isomers with the same molecular length, while the conductance is almost identical in symmetric and asymmetric platinum(Ⅱ)-oligoynyl complexes. Theoretical study uncovers that, upon connecting to the oligoynyl structure, the aromatic group effectively extends the π-system of the whole conductive backbone and gathers the HOMO population mainly on the longer oligoynyl ligand, which reduces the energy barrier in electron transport and enhances the conductance through HOMO energy lifting. This result provides feasible strategy for achieving high conductive molecular devices.  相似文献   

6.
The perfluoroalkyl substances(PFS) have attracted considerable attention in recent years as a persistent global pollutant to be able to bioaccumulate in higher organisms.In this paper,theoretical analysis on electronic structures,optoelectronic properties and absorption spectra properties of the perflurooctane sulfonate(PFOS) in gas phase have been investigated by using the DFT/TD-DFT method.The geometric structures,electrostatic potentials,energy gaps,ionization potentials,electron affinities,frontier molecular orbital,excitation energies and absorption spectra for the ground state of PFOS were calculated.The result indicates that the ability of accepting electron of neutral PFOS is larger than that of anionic PFOS,while the electron excited by UV irradiation from HOMO to LUMO in the anionic PFOS is easier than that in the neutral PFOS.  相似文献   

7.
45 isomers of TinNm (n + m = 5, 6) clusters, including linear, some planar and some stero configurations, have been predicted by density functional theory method. For five-atom clusters Ti3N2 and Ti2N3, the most stable structures are trigonal bipyramid in D3h symmetry, and for TiaN cluster, the isomer with one nitrogen atom occupying the center of quasi-tetrahedron is the most stable. In the isomers of Ti4N2 and Ti3N3, the planar networks are more stable, but for Ti2N4, the six-membered ring configuration is the most favorable. Most linear structures can form weak-strong bonds alternately with higher energy. As regards to planar structures, the more Ti-N bonds are formed, the more stable they will be; for stero closed polyhedral isomers, their energies are lower.  相似文献   

8.
A series of 3. 0Mo/(Hβ γ-Al2O3) samples with γ-Al2O3 contents in the range of 0-100% (mass fraction) was studied by means of XRD, NH3-TPD, TPR and BET determinations for characterizing their structures. The Hβ zeolite structure in the 3. 0Mo/Hβ sample can be effectively stabilized by adding some γ-Al2O3to Hβ zeolite. γ-Al2O3 mainly favors the formation of polymolybdate or multilayered Mo oxide, while Hβmainly forms the Al2(MoO4)3 species, as evaluated by the TPR technique. When used as the catalyst for the metathesis of butylene-2 and ethylene to propylene, there exists a close correlation between the specific surface area and stability of the catalyst. The specific surface area of the catalyst shows the maximum when (Hβ γ-Al2O3) contains 30%γ-Al2O3, which is in agreement with that of the time needed for the reaction stablization. In the case of maximum surface area, the rate of coke deposition is the minimum.  相似文献   

9.
An accurate three-dimensional potential energy surface(PES) for the He-Na2 van der Waals comple was calculated at the coupled cluster singles-and-doubles with noniterative inclusion of connecte triple(CCSD(T)) level of theory.A mixed basis set,aug-cc-pVQZ for the He atom and cc-pCVQZ for th sodium atom,and an additional(3s3p2d1f) set of midbond functions were used.The computed inte action energies in 819 configurations were fitted to a 96-parameter analytic potential model by leas squares fitting.The PES has two shallow wells corresponding to the T-shaped structure and the linea configuration,which are located at 12.5a0 and 14 a0 with depths of 1.769 and 1.684 cm-1,respectivel The whole potential energy surface exhibits weak anisotropy.Based on the fitted PES,state-to-stat differential cross sections were calculated.  相似文献   

10.
LIU Gang  LI De-Hua  ZHANG Ru 《结构化学》2011,30(8):1115-1121
The systematic trends and effect introduced by Zr and C co-doping to TiO2 of electronic structure and optical properties of anatase TiO2 have been calculated by the plane-wave ultra-soft pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for the exchange-correlation potential. Through the current calculations, the density of states (DOS), energy band structure and optical absorption coefficients have been obtained for TiO2 and compared with the doped TiO2, and the influence of electronic structure and optical properties caused by Zr and C co-doping has been presented qualitatively together. The results revealed that the energy band gap has been decreased owing to the doped Zr and C, whereas the optical absorption coefficients have been increased in the region of 400~800 nm and a red shift of absorption band can be found. Accordingly, photo catalytic activity of TiO2 has been enhanced. The current calculations are in good agreement with the experimental data.  相似文献   

11.
A First-principles Calculation of Structures and Stability of Al13I Cluster   总被引:1,自引:1,他引:0  
Using first-principles pseudo-potential plane wave method, the energetics, geometrical and electronic structures of three Al13I cluster isomers were calculated. The calculation results of the binding energy indicate Al13I cluster is more stable than Al13 cluster although its electrons are not a magic number as in Al13 cluster, and among Al13I cluster isomers the "Bridge" structure is the most stable, the second is the "Ontop" structure, and the worst is the "Hollow" structure. By analyzing the geometrical structures of Al13I cluster isomers, it is found that after I atom and Al13 cluster combine the geometrical structures of Al13 moieties are changed besides Al13IHollow cluster, in which the Al13 moiety is still a regular icosahedron. For Al13IOntop cluster, the Al13 moiety has a shrinking trend to I, whereas in Al13IBridge cluster it is distorted. Mulliken population analysis shows for the interaction of electrons between Al(I atoms in Al13I cluster not only there exists an ionic bonding but there is a covalent bonding. Part of electrons in the Al13 cluster transfer to I as Al13 cluster and I atom combine. The order of the strength of covalent bonding between Al13 moiety and I in Al13I cluster isomers is Al13IBridge>Al13IHollow>Al13IOntop. Further analysis of electric structures of Al13 and Al13I clusters indicates a higher stability of Al13I cluster than Al13 cluster can be attributed to the s-p hybridization of 3s and 3p electrons of Al in Al13 moiety induced by I doped, which leads to fewer electrons N(EF) at EF in Al13I and a larger energy gap ΔEH-L between HOMO and LUMO levels in Al13I cluster. The distinguish of structural stability of Al13I cluster isomers mainly originates from their different magnitudes in decrease of N(EF) and increase of ΔEH-L relative to Al13 cluster. The fewest N(EF) and the largest ΔEH-L are responsible for the high stability of Al13IBridge cluster .  相似文献   

12.
The candidate structures for the ground-state geometry of the Al(7)M (M = Li, Cu, Ag, and Au) clusters are obtained within the spin-polarized density functional theory. Absorption energy, vertical ionization potential, vertical electron affinity, and the energy gap between the highest occupied molecular orbital (HOMO) level and the lowest unoccupied molecular orbital (LUMO) level have been calculated to investigate the effects of doping. Doping with Ag or Au can lead to a large HOMO-LUMO gap, low electron affinity, and increased ionization potential of Al(7) cluster. In the lowest-energy structure of the Al(7)Au cluster, the Al atom binding to the Al(6)Au acts monovalent and the other six Al atoms are trivalent. Thus, the Al(7)Au cluster has 20 valence electrons, and its enhanced stability may be due to the electronic shell closure effect.  相似文献   

13.
Despite intensive studies of the neutral tropyl radical, none of its structure, energetics, and vibrational modes are still clear. This system has puzzled scientists for over a decade since one vibrational mode frequency sharply varies from imaginary number 3000i cm-1 to the real number 6000 cm-1, depending on the calculation methods employed. We find that the origin of this peculiar mode is due to the pseudorotation (omegairot) involved in the interconversion of two nearly isoenergetic Jahn-Teller configurations (elongated structure 2B1 and compressed structure 2A2 with C2v symmetry). Here, we first report that this interconversion is not via D7h or C2v symmetry configuration but via Cs symmetry (i.e., by changing the C2v axis). This interconversion barrier is found negligibly small. Thus, the two conformers are considered to be not two different structures but a dynamically identical structure with partial quantum statistical distributions on the potential energy surface. Owing to the nearly barrierless pseudorotation, the overall structure in a short time scale (less than femtosecond) would be Cs-like between 2A2 and 2B1 configurations with small fluctuation of bond distances. However, the dynamical transitions between the 2B1 and 2A2 configurations via 14 different pseudorotation pathways would make the tropyl radical have the effective D7h structure in either a nonshort time scale (greater than femtosecond) or at nonlow temperatures, which explains the high temperature electron spin resonance experiments.  相似文献   

14.
A systematic theoretical study of the PbnM (M=C, Al, In, Mg, Sr, Ba, and Pb; n=8, 10, 12, and 14) clusters have been investigated to explore the effect of impurity atoms on the structure and electronic properties of lead clusters. The calculations were carried out using the density functional theory with generalized gradient approximation for exchange-correlation potential. Extensive search based on large numbers of initial configurations has been carried out to locate the stable isomers of PbnM clusters. The results revealed that the location of the impurity atom depends on the nature of interaction between the impurity atom and the host cluster and the size of the impurity atom. Whereas, the impurity atoms smaller than Pb favor to occupy the endohedral position, the larger atoms form exohedral capping of the host cluster. The stability of these clusters has been analyzed based on the average binding energy, interaction energy of the impurity atoms, and the energy gap between the highest occupied and lowest unoccupied energy levels (HLG). Based on the energetics, it is found that p-p interaction dominates over the s-p interaction and smaller size atoms interact more strongly. The stability analysis of these clusters suggests that, while the substitution of Pb by C or Al enhances the stability of the Pbn clusters, Mg lowers the stability. Further investigations of the stability of PbnM clusters reveal that the interplay between the atomic and electronic structure is crucial to understand the stability of these clusters. The energy gap analysis reveals that, while the substitution of Mg atom widens the HLG, all other elements reduce the gap of the PbnM clusters.  相似文献   

15.
In this paper we present a theoretical study of the structure, energetics, potential energy surfaces, and energetic stability of excess electron bubbles in ((4)He)(N) (N=6500-10(6)) clusters. The subsystem of the helium atoms was treated by the density functional method. The density profile was specified by a void (i.e., an empty bubble) at the cluster center, a rising profile towards a constant interior value (described by a power exponential), and a decreasing profile near the cluster surface (described in terms of a Gudermannian function). The cluster surface density profile width (approximately 6 A) weakly depends on the bubble radius R(b), while the interior surface profile widths (approximately 4-8 A) increase with increasing R(b). The cluster deformation energy E(d) accompanying the bubble formation originates from the bubble surface energy, the exterior cluster surface energy change, and the energy increase due to intracluster density changes, with the latter term providing the dominant contribution for N=6500-2 x 10(5). The excess electron energy E(e) was calculated at a fixed nuclear configuration using a pseudopotential method, with an effective (nonlocal) potential, which incorporates repulsion and polarization effects. Concurrently, the energy V(0) of the quasi-free-electron within the deformed cluster was calculated. The total electron bubble energies E(t)=E(e)+E(d), which represent the energetic configurational diagrams of E(t) vs R(b) (at fixed N), provide the equilibrium bubble radii R(b) (c) and the corresponding total equilibrium energies E(t) (e), with E(t) (e)(R(e)) decreasing (increasing) with increasing N (i.e., at N=6500, R(e)=13.5 A and E(t) (e)=0.86 eV, while at N=1.8 x 10(5), R(e)=16.6 A and E(t) (e)=0.39 eV). The cluster size dependence of the energy gap (V(0)-E(t) (e)) allows for the estimate of the minimal ((4)He)(N) cluster size of N approximately 5200 for which the electron bubble is energetically stable.  相似文献   

16.
孙秀良  黄崇品  张傑 《无机化学学报》2009,25(11):2053-2061
基于量子化学中的密度泛函理论(DFT),通过β分子筛同模板剂四乙胺阳离子(TEA+)的主客体相互作用来讨论了模板剂分子对骨架Al的靶向作用。计算采用了密度泛函理论中的B3LYP方法在6-31G(d,p)基组上研究了β分子筛同TEA+主客体相互作用的几何结构、分子轨道、电荷分布以及9个不同骨架位置的相互作用能。研究结果表明:带正电荷的TEA+吸引β分子筛上Al原子形成的阴离子中心(Zeo-AlO4-),两者具有很好的匹配关系。通过主客体相互作用影响了Al原子在分子筛中的分布。骨架Al最有利于落位在β分子筛的T5和T6位,落位的稳定性顺序是Group Ⅱ(T5,T6)>Group Ⅲ(T7-T9)>Group Ⅰ(T1-T4)。  相似文献   

17.
This study describes a prototypical, bimetallic heterogeneous catalyst: compositionally well-defined Ir-Pt nanoclusters with sizes in the range of 1-2 nm supported on γ-Al(2)O(3). Deposition of the molecular bimetallic cluster [Ir(3)Pt(3)(μ-CO)(3)(CO)(3)(η-C(5)Me(5))(3)] on γ-Al(2)O(3), and its subsequent reduction with hydrogen, provides highly dispersed supported bimetallic Ir-Pt nanoparticles. Using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM) and theoretical modeling of synchrotron-based X-ray absorption spectroscopy (XAS) measurements, our studies provide unambiguous structural assignments for this model catalytic system. The atomic resolution C(s)-STEM images reveal strong and specific lattice-directed strains in the clusters that follow local bonding configurations of the γ-Al(2)O(3) support. Combined nanobeam diffraction (NBD) and high-resolution transmission electron microscopy (HRTEM) data suggest the polycrystalline γ-Al(2)O(3) support material predominantly exposes (001) and (011) surface planes (ones commensurate with the zone axis orientations frequently exhibited by the bimetallic clusters). The data reveal that the supported bimetallic clusters exhibit complex patterns of structural dynamics, ones evidencing perturbations of an underlying oblate/hemispherical cuboctahedral cluster-core geometry with cores that are enriched in Ir (a result consistent with models based on surface energetics, which favor an ambient cluster termination by Pt) due to the dynamical responses of the M-M bonding to the specifics of the adsorbate and metal-support interactions. Taken together, the data demonstrate that strong temperature-dependent charge-transfer effects occur that are likely mediated variably by the cluster-support, cluster-adsorbate, and intermetallic bonding interactions.  相似文献   

18.
The structure, energetics, and dynamics of He2ICl complex in its ground state are studied by means of ab initio electronic structure and quantum-mechanical calculations. Interaction energies for selected He2ICl configurations are calculated at the coupled-cluster [CCSD(T)] level of theory using a large-core pseudopotential for the I atom and the aug-cc-pVTZ and aug-cc-pV5Z basis sets for the Cl and He atoms, respectively. The surface is characterized around its lower five minima and the minimum energy pathways through them. The global minimum of the potential corresponds to a "police-nightstick (1)" configuration, the second one to a linear, the next one to tetrahedral configuration, and the following two to "bifork" and "police-nightstick (2)" structures, with well depths of -99.12, -97.42, -88.32, -85.84, and -78.54 cm(-1), respectively. An analytical form based on the sum of the three-body parametrized HeICl interactions plus the He-He interaction is found to represent very well the tetra-atomic CSSD(T) results. The present potential expression is employed to perform variational five-dimensional quantum-mechanical calculations to study the vibrational bound states of the van der Waals He2ICl complex. Results for total angular momentum J = 0 provide the binding energy D0 and the corresponding vibrationally averaged structure for different isomers of the cluster. Comparison of these results with recent experimental observations further justifies the potential used in this work.  相似文献   

19.
Al2-Al40 clusters were studied by means of the all-electron DFT method.The properties of the aluminum clusters including binding energy,the second difference in energy,HOMO-LUMO gap,especially fragmentation energies and ionization potentials,were analyzed.The main products from the dissociations of aluminum cluster ions are shown to be Al+Al+n-1 for the larger clusters,and Al++Aln-1 for the smaller ones.And,the calculated ionization potentials are consistent with the experiment data.  相似文献   

20.
We report an extensive first-principles study of the structure and electronic properties of Ag(n) (n = 1-8) clusters isolated in gas phase and deposited on the α-Al(2)O(3) surface. We have used the plane wave based pseudopotential method within the framework of density functional theory. The electron ion interaction has been described using projector augmented wave (PAW), and the spin-polarized GGA scheme was used for the exchange correlation energy. The results reveal that, albeit interacting with support alumina, the Ag atoms prefers to remain bonded together suggesting an island growth motif is preferred over wetting the surface. When compared the equilibrium structures of Ag clusters between free and on alumina substrate, a significant difference was observed starting from n = 7 onward. While Ag(7) forms a three-dimensional (3D) pentagonal bipyramid in the isolated gas phase, on alumina support it forms a planar hexagonal structure parallel to the surface plane. Moreover, the spin moment of the Ag(7) cluster was found to be fully quenched. This has been attributed to higher delocalization of electron density as the size of the cluster increases. Furthermore, a comparison of chemical bonding analysis through electronic density of state (EDOS) shows that the EDOS of the deposited Ag(n) cluster is significantly broader, which has been ascribed to the enhanced spd hybridization. On the basis of the energetics, it is found that the adsorption energy of Ag clusters on the α-Al(2)O(3) surface decreases with cluster size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号