首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A sheath flow gating interface (SFGI) is presented for the on-line coupling of solid-phase extraction (SPE) with capillary electrophoresis (CE). The design, construction and operation of the SFGI are described in detail. After operating conditions were investigated and selected, the SFGI was evaluated on a SPE–CE–UV setup using hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith as the absorbent and using three phenols as the test analytes. The preconcentration factors obtained with the SPE–CE–UV system and the SPE–UV part are 530 and 550, respectively. The plate numbers obtained using the SPE–CE–UV system are slightly better than or comparable to those with the CE–UV part. The precisions (RSDs) of 100 consecutive injections are 2.43%, 3.86%, and 4.25% for peak height, peak area and migration time, respectively. The measured recoveries for the river water samples spiked at three different levels are in the range of 93.6–102.8% with the interday RSD values ranging from 2.0 to 4.5% (n = 3). These data collectively demonstrate that the SFGI has the ability to exactly and reproducibly transfer nanoliters of fractions from SPE onto CE with no degradation of the efficiencies of SPE and CE, suggesting a great potential to be routinely used for the coupling of SPE, microcolumn LC or FIA with CE.  相似文献   

2.
This article reviews the status of solid-phase extraction (SPE) coupled with capillary electrophoresis (CE). It focuses on some of the organic pollutants which have captured the interest of analytical chemists--phenols, surfactants, dyes, polynuclear aromatic hydrocarbons (PAHs), aromatic and aliphatic amines, aromatic acids and aromatic sulfonic acids--and, in particular, on monitoring pesticides from different sources. It shows that the coupling of SPE to CE has considerable potential in the analysis of environmental pollutants.  相似文献   

3.
Sorbent preconcentration offers good strategies to overcome the poor detection limits of capillary electrophoresis (CE). The present review focuses on the recent trends of the coupling between sorbent preconcentration techniques, namely solid-phase extraction (SPE) and solid-phase microextraction (SPME), to capillary electrophoresis (CE). Special attention is given to their environmental and biological application. We also discuss the most important advantages and disadvantages of the different methodologies and briefly outline the new trends of the coupling between sorbent preconcentration and CE.  相似文献   

4.
An approach based on staggered multistep elution solid-phase extraction (SPE) capillary electrophoresis/tandem mass spectrometry (CE/MS/MS) was developed in the analysis of digested protein mixtures. On-line coupling of SPE with CE/MS was achieved using a two-leveled two-cross polydimethylsiloxane (PDMS)-based interface. Multistep elution SPE was used prior to CE to provide an additional dimension of separation, thus extending the separation capacity for the peptide mixture analysis. By decreasing in the number of co-eluting peptides, problems stemming from ionization suppression and finite MS/MS duty cycle were reduced. As a result, sequence coverage increased significantly using multistep elution SPE-CE/MS/MS compared to one-step elution SPE-CE/MS/MS in the analysis of a single protein tryptic digest (49% vs. 18%) and a six protein tryptic digest (22-71% vs. 10-44%). A staggered CE method was incorporated to increase the throughput. The electropherograms of consecutive CE runs were partially overlapped by injecting the sample plug at a fixed time interval. With the use of a 5 min injection interval, slightly poor results were obtained in comparison with the sequential CE method while the total analysis time was reduced to 28%.  相似文献   

5.
An experimental setup is presented here for the automated analysis of microsamples, based on the on-line coupling of a capillary SPE module and a CE unit using a two-position six-port valve, an open-closed valve to isolate electrically the sample preparation from the CE unit and a "T" interface. A C18 trapping microcolumn (dimensions 2.5 cm x 100 microm id x 360 microm od) was used for the SPE step. The utility of the proposed experimental setup was demonstrated by applying it to the determination of quinolone antibiotics in serum microsamples, which was efficiently carried out in less than 20 min (4 min for protein denaturation and 15 min for analytes preconcentration and CE-UV separation-determination). A complete optimization study was performed for preconcentration and cleanup of quinolones, the coupling of sample preparation module to the CE unit and electrophoretic separation of quinolones. A preconcentration factor of 10.4 was achieved. The volume injected with the proposed method was 125 nL versus 160 nL introduced by hydrodynamic injection. The volume required for the analysis was 2 microL, which makes the proposed experimental setup very useful for the analysis of microsamples in fields of current interest such as metabolomics or proteomics.  相似文献   

6.
CE is gaining great popularity as a well‐established separation technique for many fields such as pharmaceutical research, clinical application, environmental monitoring, and food analysis, owing to its high resolving power, rapidity, and small amount of samples and reagents required. However, the sensitivity in CE analysis is still considered as being inferior to that in HPLC analysis. Diverse enrichment methods and techniques have been increasingly developed for overcoming this issue. In this review, we summarize the recent advances in enrichment techniques containing off‐line preconcentration (sample preparation) and on‐line concentration (sample stacking) to enhancing sensitivity in CE for trace analysis over the last 5 years. Some relatively new cleanup and preconcentration methods involving the use of dispersive liquid–liquid microextraction, supercritical fluid extraction, matrix solid‐phase dispersion, etc., and the continued use and improvement of conventional SPE, have been comprehensively reviewed and proved effective preconcentration alternatives for liquid, semisolid, and solid samples. As for CE on‐line stacking, we give an overview of field amplication, sweeping, pH regulation, and transient isotachophoresis, and the coupling of multiple modes. Moreover, some limitations and comparisons related to such methods/techniques are also discussed. Finally, the combined use of various enrichment techniques and some significant attempts are proposed to further promote analytical merits in CE.  相似文献   

7.
On-line coupling of SPE and CE-MS for peptide analysis   总被引:1,自引:0,他引:1  
An on-line SPE-CE-MS system has been developed for the analysis of peptides. Analytes are preconcentrated using a C(18) microcolumn (5 x 0.5 mm id), and then introduced into the CE system via a valve interface. The CE system with a Polybrene-poly(vinylsulfonate) bilayer coated capillary is combined with an ion-trap mass spectrometer via ESI using a coaxial sheath-liquid sprayer. The on-line coupling of the SPE and CE step by the valve interface is advantageous because it allows an independent functioning of the system parts. Optimization of the SPE-CE system was performed using UV detection. Subsequently, the SPE-CE system has been coupled to the ion-trap mass spectrometer. Test solutions with enkephalin peptides (50 ng/mL) were used for evaluation of system performance. Repeatability of effective mobility and peak area ratio of the two enkephalins were within 1.2% and 9% RSD, respectively. The analysis of 1:1 v/v diluted cerebrospinal fluid samples spiked with enkephalin peptides showed detection limits (S/N = 3) in the range of 1.5-3 ng/mL (around 5 nM), which were similar to those obtained for enkephalin test solutions. Moreover, the potential of the on-line SPE-CE-MS system was demonstrated by the analysis of a cytochrome C digest. Some hydrophilic peptides did not show sufficient retention on the SPE column, and were lost during preconcentration. Nonetheless, positive identification of the protein was achieved, indicating the feasibility of the system for proteomics.  相似文献   

8.
A miniaturised technique to analyse and detect heterocyclic aromatic amines (HAs) using micro solid-phase extraction (SPE) coupled on-line (in-capillary) to capillary electrophoresis (CE) separation with nanospray (nESI) mass spectrometry (MS) detection has been developed. HAs are mutagenic and carcinogenic compounds formed at low levels in protein-rich food during cooking. Due to the low concentrations of HAs and the high complexity of the matrix in which they exist, sensitive and selective analytical methods are required for quantification. SPE was performed on a packed bed of C18 particles inside the CE capillary, which minimised the dead volume. The on-line coupling of SPE, CE and nESI-MS reduced the time for extraction and identification to less than half an hour, which will allow for screening of several samples per day. The new technique provides short analysis time, low sample and solvent consumption, and HAs in standard solutions were easily detected at 12–17 fmol injections, and in spiked urine samples at 750–810 fmol injections.  相似文献   

9.
Fritless SPE on‐line coupled to CE with UV and MS detection (SPE‐CE‐UV and SPE‐CE‐MS) was evaluated for the analysis of opioid peptides. A microcartridge of 150 μm id was packed with a C18 sorbent (particle size > 50 μm), which was retained between a short inlet capillary and a separation capillary (50 μm id). Several experimental parameters were optimized by SPE‐CE‐UV using solutions of dynorphin A (DynA), endomorphin 1 (End1), and methionine‐enkephaline (Met). A microcartridge length of 4 mm was selected, sample was loaded for 10 min at 930 mbar and the retained peptides were eluted with 67 nL of an acidic hydro‐organic solution. Using SPE‐CE‐MS, peak area and migration time repeatabilities for the three opioid peptides were 12–27% and 4–5%, respectively. SPE recovery was lower for the less hydrophobic DynA (22%) than for End1 (66%) and Met (78%) and linearity was satisfactory in all cases between 5 and 60 ng/mL. The LODs varied between 0.5 and 1.0 ng/mL which represent an enhancement of two orders of magnitude when compared with CE‐MS. Cerebrospinal fluid (CSF) samples spiked with the opioid peptides were analyzed to demonstrate the applicability to biological samples. Peak area and migration time repeatabilities were similar to the standard solutions and the opioid peptides could be detected down to 1.0 ng/mL.  相似文献   

10.
讨论了原子荧光光度计从传统的间歇式或流动注射式操作到与毛细管电泳联用技术的转化.考察了不同接口对分离的影响,优化了氢化物发生所用的气液分离器及原子荧光光度计的原子化器.通过缩短连路和改变管路内径等方式消除了体系的反压.将优化的仪器条件应用于As的形态分析,结果令人满意.  相似文献   

11.
We present a new system for the sensitive analysis of cephalosporins by CE using both on-line SPE and large-volume sample stacking (LVSS). Sample volumes of 250 muL were loaded onto the SPE microcolumn which was then desorbed with 426 nL of ACN. The SPE elution plug was injected into the CE system via an in-line valve interface filling approximately 60% of the volume of the separation capillary. Subsequently, LVSS was performed by applying a voltage of -5 kV, which resulted in the simultaneous removal of the elution solvent and the preconcentration of the analytes in a narrow zone. This way the amount of analyte loaded into the capillary could be considerably increased without serious loss of CE separation efficiency. LODs for cefoperazone and ceftiofur were in the ng/L range which represents an improvement of a factor of 8450 and 11 450 when compared with direct CE injection. The cephalosporin test compounds presented a good linear response (corrected peak area) between 0.5 and 10 mug/L with correlation coefficients higher than 0.995. The final method is compared with previously reported LVSS-CE and SPE-CE systems for the analysis of cephalosporins.  相似文献   

12.
This work presents a strategy based on the in‐line coupling of SPE and CE for the chiral determination of cathinones (R,S‐mephedrone, R,S‐4‐methylephedrine, and R,S‐ methylenedioxypyrovalerone) in urine samples, using a sample pretreatment based on liquid‐liquid extraction. The chiral separation of the compounds is achieved by adding a mixture of 8 mM 2‐hydroxypropil β‐CD and 5 mM β‐CD to the BGE, which consists of 70 mM of monosodium phosphate aqueous solution at pH 2.5. Oasis HLB was the selected sorbent for the in‐line SPE device, and to reduce analysis time and LODs, several parameters affecting the in‐line SPE system were evaluated, such as pressure and time of sample injection and dimensions of the SPE device. The highest preconcentration factors were achieved by using 3 bar of injection pressure for 20 min with an in‐line SPE device of 2 mm length and 150 µm of i.d. The developed method was applied to determine the presence of the compounds in spiked urine samples. The LODs obtained were between 3 and 8 ng/mL, and these levels were below the usual concentrations at which these drugs are present in urine from cathinone abusers. Thus, the optimized method has the potential to be applied for toxicological and forensic purposes.  相似文献   

13.
In-line solid-phase extraction (SPE) for capillary electrophoresis (CE) was investigated using a synthesized monolith and a commercial packing material. Terbutaline (TER) and 4-hydroxy-3-methoxy-methamphetamine (HMMA) with benzyl alcohol as the electroosmotic flow marker were employed as model compounds. Two types of methacrylate-based monoliths, namely methacrylic acid-ethylene dimethacrylate and butylmethacrylate-ethylene dimethacrylate were examined. Preliminary results indicated that a non-aqueous separating medium is more suitable for these methacrylate monoliths than a purely aqueous medium (non-reproducible elution). However, coupling of the methacrylic acid-ethylene dimethacrylate with non-aqueous capillary electrophoresis could not provide good precision for the three model compounds. A packed-silica C18 SPE was also adopted by simply packing the C18 particles in situ in the separation capillary. Using an aqueous running buffer (10 mM phosphate buffer (PPB), pH 7), acceptable precision could be obtained with this type of SPE material. With a 10 min loading time and 20 min total analysis time, the pre-concentration factors were 333 and 1000 for TER and HMMA, respectively. The %RSD were less than 4.5 and 0.3 for the peak areas and migration times, respectively, for both HMMA and TER (n=20).  相似文献   

14.
The use of SPE coupled in‐line to CE using electrospray MS detection (in‐line SPE‐CE‐ESI‐MS) was investigated for the preconcentration and separation of four UV filters: benzophenone‐3, 2,2‐dihydroxy‐4‐methoxybenzophenone, 2,4‐dihydroxybenzophenone and 2‐phenylbenzimidazole‐5‐sulphonic acid. First, a CE‐ESI‐MS method was developed and validated using standard samples, obtaining LODs between 0.06 μg/mL and 0.40 μg/mL. For the in‐line SPE‐CE‐ESI‐MS method, three different sorbents were evaluated and compared: Oasis HLB, Oasis MCX, and Oasis MAX. For each sorbent, the main parameters affecting the preconcentration performance, such as sample pH, volume, and composition of the elution plug, and sample injection time were studied. The Oasis MCX sorbent showed the best performance and was used to validate the in‐line SPE‐CE‐ESI‐MS methodology. The LODs reached for standard samples were in the range between 0.01 and 0.05 ng/mL with good reproducibility and the developed strategy provided sensitivity enhancement factors between 3400‐fold and 34 000‐fold. The applicability of the developed methodology was demonstrated by the analysis of UV filters in river water samples.  相似文献   

15.
Several commercial immobilized metal affinity chromatography sorbents were evaluated in this study for the analysis of two small peptide fragments of the amyloid β‐protein (Aβ) (Aβ(1–15) and Aβ(10–20) peptides) by on‐line immobilized metal affinity SPE‐CE (IMA‐SPE‐CE). The performance of a nickel metal ion (Ni(II)) sorbent based on nitrilotriacetic acid as a chelating agent was significantly better than two copper metal ion (Cu(II)) sorbents based on iminodiacetic acid. A BGE of 25 mM phosphate (pH 7.4) and an eluent of 50 mM imidazole (in BGE) yielded a 25‐fold and 5‐fold decrease in the LODs by IMA‐SPE‐CE‐UV for Aβ(1–15) and Aβ(10–20) peptides (0.1 and 0.5 μg/mL, respectively) with regard to CE‐UV (2.5 μg/mL for both peptides). The phosphate BGE was also used in IMA‐SPE‐CE‐MS, but the eluent needed to be substituted by a 0.5% HAc v/v solution. Under optimum preconcentration and detection conditions, reproducibility of peak areas and migration times was acceptable (23.2 and 12.0%RSD, respectively). The method was more sensitive for Aβ(10–20) peptide, which could be detected until 0.25 μg/mL. Linearity for Aβ(10–20) peptide was good in a narrow concentration range (0.25–2.5 μg/mL, R2 = 0.93). Lastly, the potential of the optimized Ni(II)‐IMA‐SPE‐CE‐MS method for the analysis of amyloid peptides in biological fluids was evaluated by analyzing spiked plasma and serum samples.  相似文献   

16.
《Electrophoresis》2017,38(3-4):507-512
LIF detection often requires labeling of analytes with fluorophores; and fast fluorescent derivatization is valuable for high‐throughput analysis with flow‐gated CE. Here, we report a fast fluorescein‐labeling scheme for amino acid neurotransmitters, which were then rapidly separated and detected in flow‐gated CE. This scheme was based on the reaction between primary amines and o‐phthalaldehyde in the presence of a fluorescent thiol, 2‐((5‐fluoresceinyl)aminocarbonyl)ethyl mercaptan (FACE‐SH). The short reaction time (<30 s) was suited for on‐line mixing and derivatization that was directly coupled with flow‐gated CE for rapid electrophoretic separation and sensitive LIF detection. To maintain the effective concentration of reactive FACE‐SH, Tris(2‐carboxyethyl)phosphine was added to the derivatization reagents to prevent thiol loss due to oxidation. This labeling scheme was applied to the detection of neurotransmitters by coupling in vitro microdialysis with online derivatization and flow‐gated CE. It is also anticipated that this fluorophore tagging scheme would be valuable for on‐chip labeling of proteins retained on support in SPE.  相似文献   

17.
This article presents an overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems that have been reported in the literature between January 2009 and July 2011. The present paper is an update of two previous review papers covering the years 2000-2009 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54). Both in-line and on-line SPE-CE approaches are treated and outlined. Attention is paid to emerging technological developments, such as the use of carbon nanotubes and magnetic particles for on-line extraction of sample components prior to CE analysis. Selected examples illustrate the applicability of SPE-CE in biomedical, pharmaceutical, environmental and food analysis. A full overview of recent SPE-CE studies is given in table format, providing information about sample type, SPE sorbent, coupling mode, detection mode and limit of detection. Finally, some general conclusions and future perspectives are given.  相似文献   

18.
Summary Liquid chromatography (LC) and capillary electrophoresis (CE) have been compared for the analysis of the dyes brilliant blue and azorubine in red wines. A liquid-liquid extraction procedure followed by an ion-pair LC method was developed to separate the dyes from the wine polyphenols allowing reliable UV-spectral identification of the target dyes with limits of detection of 10 and 20 ppb for azorubine and brilliant blue, respectively. Because adulteration of wine with dyes is usually in the ppm level, CE proved to be a good alternative for the LC method. CE could be applied after a simple sample clean-up step by SPE eliminating interference from the bulk of the polyphenols. Although LC proved to be more sensitive compared to CE, the latter is more effective in reducing interferences from other wine components and showed the typical advantages of CE such as low solvent consumption and speed of analysis.  相似文献   

19.
20.
The separation of three selective serotonin reuptake inhibitors (SSRIs) by capillary electrophoresis (CE) with fully integrated solid-phase extraction (SPE) is described. Polymeric monolithic SPE modules were prepared in situ within a fused silica capillary from either butyl methacrylate-co-ethylene dimethacrylate or 3-sulfopropyl methacrylate-co-butyl methacrylate-co-ethylene dimethacrylate. Using a 1 cm SPE module placed at the inlet of the capillary, a mixture of sertraline, fluoxetine and fluvoxamine was extracted from aqueous solution by applying a simple pressure rinse. Under pressure-driven conditions, efficient elution was possible from both SPE materials investigated using 50 mM phosphate buffer, pH 3.5 in acetonitrile (20/80, v/v). Two different strategies were investigated for the efficient elution and subsequent CE separation. Injection of an aqueous sample plug directly into the non-aqueous elution/separation buffer was found to be unsuitable with poor elution profiles observed in the electrodriven mode. Alternatively, a sample plug equivalent to several capillary volumes could be injected by pressure followed by filling the capillary with the non-aqueous elution/separation buffer from the outlet end using a combination of pressure and electrodriven flow. Using a neutral monolith, efficient elution/separation was not possible due to an unstable electroosmotic flow (EOF), however, by adding the ionisable monomer, 3-sulfopropyl methacrylate to the SPE module to increase and stabilise the EOF, it was possible to achieve efficient elution from the SPE module, followed by baseline separation by CE using a 200 mM acetate buffer, pH 3.5 in acetonitrile (10/90, v/v). With enrichment factors of over 500 achieved for each of the analytes this demonstrates the potential of in-line SPE-CE for the sensitive analysis of these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号