首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The syntheses of group 4 metal complexes containing the picolyldicarbollyl ligand DcabPyH [nido-7-HNC5H4(CH2)-8-R-7,8-C2B9H10] (2) are reported. New types of constrained geometry group 4 metal complexes (DcabPy)MCl2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}MCl2] (M = Ti, 3; Zr, 4; R = H, a; Me, b), were prepared by the reaction of 2 with M(NMe2)2Cl2 (M = Ti, Zr). The reaction of 2 with M(NMe2)4 in toluene afforded (DcabPy)M(NMe2)2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}M(NMe2)2] (M = Ti, 5; Zr, 6; R = H, a; Me, b), which readily reacted with Me3SiCl to yield the corresponding chloride complexes (DcabPy)MCl2 (M = Ti, 3; Zr, 4; R = H, a; Me, b). The structures of the diamido complexes (DcabPy)M(NMe2)2 (M = Ti, 5; Zr, 6) were established by X-ray diffraction studies of 5a, 5b, and 6a, which verified an η51-bonding mode derived from the dicarbollylamino ligand. Related constrained geometry catalyst CGC-type alkoxy titanium complexes, (DcabPy)Ti(OiPr)2 (7), were synthesized by the reaction of 2 with Ti(OiPr)4. Sterically less demanding phenols such as 2-Me-C6H4OH replaced the coordinated amido ligands on (DcabPy)Ti(NMe2)2 (5a) to yield aryloxy stabilized CGC complexes (DcabPy)Ti(OPhMe)2(PhMe  =  2- Me-C6H4, 8). NMR spectral data suggested that an intramolecular Ti-N coordination was intact in solution, resulting in a stable piano-stool structure with two aryloxy ligands residing in two of the leg positions. The aryloxy coordinations were further confirmed by single crystal X-ray diffraction studies on complexes (DcabPy)Ti(OPhMe)2 (8).  相似文献   

2.
The boron-bridged constrained geometry titanium complexes [Ti[eta5:eta1-(C5H4)B(NR2)NPh](NMe2)2][R = iPr (3), SiMe3(4)] and [Ti[eta5:eta1-(C9H6)B(NiPr2)NPh](NMe2)2](12) have been prepared in good yields by amine elimination reaction from [Ti(NMe2)4]. Subsequent deamination-chlorination with excess Me3SiCl yielded the corresponding dichloro-complexes (5, 6, 13). Reaction of the analogous ligand precursors (C5H5)B(NiPr2)N(H)R (R = Cy, tBu) with [Ti(NMe2)4] did not result in the expected bridged compounds, but rather in the half-sandwich complexes [Ti[(eta5-C5H4)B(NiPr2)N(H)R](NMe2)3][R = Cy (9), tBu (10)]. All compounds were fully characterised by means of multinuclear NMR spectroscopy. Thorough investigation of substituent effects was achieved by comparative X-ray diffraction studies on complexes 3, 5, 6 and 12.  相似文献   

3.
Four new solvent-induced Cu(II) complexes with the chemical formulae [{Cu(HL)(CH3OH)}2Cu] · CH3OH (1), [{(Cu(HL))2(CH3CH2OH)2}Cu] (2), [{CuL(H2O)}2Cu2] · 2CH3CH2CH2OH (3) and [{(Cu(HL))2(CH3CH2CH2CH2OH)2}Cu] (4), where H4L = 6,6′-dihydroxy-2,2′-[ethylenediyldioxybis(nitrilomethylidyne)]diphenol, have been synthesized and characterized by elemental analyses, 1H NMR, FT-IR, UV–Vis spectra, TG-DTA, molar conductances and X-ray crystallography. Complexes 1, 2 and 4 have an elongated square-pyramidal geometry with an unusually long bond from the penta-coordinated Cu(II) centres to the oxygen atoms of the apically coordinated solvent (methanol, ethanol or n-butanol) molecules for the terminal Cu(II) ions, and a square planar geometry distorted tetrahedrally for the central Cu(II) ion. In complex 3, the terminal Cu(II) ions have trigonal bipyramidal coordination geometries constituted by equatorial O2N donor sites, with one oxygen atom from one of the coordinated water molecules and one nitrogen atom from a completely deprotonated L4− ligand unit in the axial positions, and the central Cu(II) ions are in slightly tetrahedrally distorted square planar geometries constituted by four phenoxo oxygen donors from two completely deprotonated L4− ligand units, and these form a tetrametal Cu–O–Cu–O–Cu–O–Cu–O eight-membered ring. These four complexes exhibit strong hydrogen bonding interactions in the solid state. Moreover, co-crystallizing n-propanol molecules link two other adjacent complex molecules into a self-assembled infinite 2D supramolecular structure via the intermolecular hydrogen bonds in complex 3.  相似文献   

4.
The ligand, 2-((2-hydroxy-5-methyl-3-((pyridin-2-ylmethylamino)methyl)benzyl)(2-hydroxybenzyl)amino)acetic acid (H(3)HPBA), which contains a donor atom set that mimics that of the active site of purple acid phosphatase is described. Reaction of H(3)HPBA with iron(III) or iron(II) salts results in formation of the tetranuclear complex, [Fe(4)(HPBA)(2)(OAc)(2)(mu-O)(mu-OH)(OH(2))(2)]ClO(4) x 5H(2)O. X-Ray structural analysis reveals the cation consists of four iron(III) ions, two HPBA(3-) ligands, two bridging acetate ligands, a bridging oxide ion and a bridging hydroxide ion. Each binucleating HPBA(3-) ligand coordinates two structurally distinct hexacoordinate iron(III) ions. The two metal ions coordinated to a HPBA(3-) ligand are linked to the two iron(III) metal ions of a second, similar binuclear unit by intramolecular oxide and hydroxide bridging moieties to form a tetramer. The complex has been further characterised by elemental analysis, mass spectrometry, UV-vis and MCD spectroscopy, X-ray crystallography, magnetic susceptibility measurements and variable-temperature M?ssbauer spectroscopy.  相似文献   

5.
Five novel nickel(II) complexes have been successfully synthesized with a heterocyclic ligand, Opdac, [Ni(Opdac)2]Cl2 (1), [Ni(Opdac)2(CH3OH)2]Br2(CH3OH)2 (2), [Ni(Opdac)2]I2 (3), [Ni(Opdac)2NO3]NO3 (4) and [Ni(Opdac)2ClO4]ClO4 (5) where Opdac = 4-(1-H-1,3-benzimidazole-2-yl)-1,5-dimethyl-2-phenyl-1-2-dihydro-3-H-pyrazol-3-one. All the complexes were characterized by elemental analysis, molar conductivity, CHN analysis, magnetic susceptibility measurements, spectroscopic studies and TG/DTA methods. In all the complexes, Opdac acts as a bidentate ligand coordinating to Ni(II) ion via the benzimidazole imine nitrogen and the pyrazolone oxygen atoms. The complexes 1 and 3 have a tetrahedral geometry while 2, 4 and 5 have an octahedral geometry around the Ni(II) center.  相似文献   

6.
Group 4 metal complexes [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole, M = Ti; R = pyridine, thiazole; M = Zr) containing the tetramethylcyclopentadienyl-dialkylsilyl bridged amidinato as pendant ligand, were synthesized and characterized by elemental analysis, solution (1)H, (13)C and (15)N NMR spectroscopy and experimental (13)C and (15)N CPMAS in the solid state. The crystal structures of [Ti(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, pyrazine, pyrimidine, thiazole) were determined by single crystal X-ray diffraction studies. All compounds exhibit a distorted tetrahedral geometry, with the ansa-monocyclopentadienyl-amido ligands acting in a bidentate mode. The [M(eta(5)-C(5)Me(4)SiMe(2)-eta(1)-N-2R)(NMe(2))(2)] (R = pyridine, thiazole; M = Zr, Ti) complexes are ethylene polymerization catalysts in the presence of MAO and they are active precursors in regioselective catalytic hydroamination operating with an anti-Markovnikov mechanism.  相似文献   

7.
The first synthesis and characterization of metal coordinated complexes containing in situ prepared chiral trinitrogen 1,3-bis(4,5-dihydrooxazol-2-ylimino)isoindoline-based pincer ligands are reported. Two zinc complexes, isolated as Zn(L)(2), where L = 1,3-bis(4,5-dihydro-4-(R)-phenyloxazol-2-ylimino)isoindoline ((R,R)-5) or 1,3-bis(4,5-dihydro-4-(S)-iso-propyloxazol-2-ylimino)isoindoline ((S,S)-6), respectively, are reported. Complexes Zn((R,R)-5)(2) and Zn((S,S)-6)(2) were prepared in situ through the condensation of phthalonitrile with enantiopure 2-amino-4-(R)-phenyloxazoline ((R)-3) or 2-amino-4-(S)-iso-propyloxazoline ((S)-4) in the presence of ZnCl(2) at 80 °C in dry toluene over 3-4 days. The characterizations of Zn((R,R)-5)(2) and Zn((S,S)-6)(2) in both the solid (X-ray crystallography) and solution (multinuclear NMR spectroscopy) states are reported.  相似文献   

8.
Zheng W  Alkorta I  Yang D  Wan L  Zhao M  Elguero J 《Inorganic chemistry》2011,50(24):12408-12410
Two 1,2,4-diazaphospholide complexes of [Ti(η(2)-3,5-Ph(2)dp)(4)] and paramagnetic [Ti(η(2)-3,5-tBu(2)dp)(3)] were prepared by the reaction of tetrakis(dimethylamido)titanium(IV) with 3,5-diphenyl-1,2,4-diazaphophole, H[3,5-Ph(2)dp], or by the treatment of 3,5-tert-butyl-1,2,4-diazaphopholide potassium, K[3,5-tBu(2)dp], with titanium trichloride. Complexes can be viewed as the core of P(σ(2)λ(3))-functionalized metallodendrimers, in which the metal atoms are exclusively η(2)(N,N) bonding to the 1,2,4-diazaphospholides while P atoms (σ(2)λ(3)) with electron lone pairs are located on the periphery of the molecules.  相似文献   

9.
The reaction between 3-hydroxy-5-hydroxymethyl-2-methyl-4-pyridinecarboxaldehyde semicarbazone (pyridoxal-semicarbazone or PLSC) and appropriate chloride, sulfate, nitrate or thiocyanate Cu(II) salts in water/alcohol mixtures resulted in the formation of new copper(II) complexes: [Cu(PLSC)Cl2] (1), [Cu(PLSC)(H2O)(SO4)]2·3H2O (2), [Cu2(PLSC)2(NCS)2](NCS)2 (3), [Cu(PLSC)(NO3)2(CH3OH)] (4) and [Cu(PLSC-2H]NH3·H2O (5). The complexes were characterized by elemental analysis, conductometric measurements and IR spectroscopy, while complexes 1, 2, 3 and 4 were further characterized by single crystal X-ray diffraction.  相似文献   

10.
The reaction of gem-dithiol compounds R 2C(SH) 2 (R = Bn (benzyl), (i) Pr; R 2 = -(CH 2) 4-) with dinuclear rhodium or iridium complexes containing basic ligands such as [M(mu-OH)(cod)] 2 and [M(mu-OMe)(cod)] 2, or the mononuclear [M(acac)(cod)] (M = Rh, Ir, cod = 1,5-cyclooctadiene) in the presence of a external base, afforded the dinuclear complexes [M 2(mu-S 2CR 2)(cod) 2] ( 1- 4). The monodeprotonation of 1,1-dimercaptocyclopentane gave the mononuclear complex [Rh(HS 2Cptn)(cod)] ( 5) that is a precursor for the dinuclear compound [Rh 2(mu-S 2Cptn)(cod) 2] ( 6). Carbonylation of the diolefin compounds gave the complexes [Rh 2(mu-S 2CR 2)(CO) 4] ( 7- 9), which reacted with P-donor ligands to stereoselectively produce the trans isomer of the disubstituted complexes [Rh 2(mu-S 2CR 2)(CO) 2(PR' 3) 2] (R' = Ph, Cy (cyclohexyl)) ( 10- 13) and [Rh 2(mu-S 2CBn 2)(CO) 2{P(OR') 3} 2] (R' = Me, Ph) ( 14- 15). The substitution process in [Rh 2(mu-S 2CBn 2)(CO) 4] ( 7) by P(OMe) 3 has been studied by spectroscopic means and the full series of substituted complexes [Rh 2(mu-S 2CBn 2)(CO) 4- n {P(OR) 3} n ] ( n = 1, 4) has been identified in solution. The cis complex [Rh 2(mu-S 2CBn 2)(CO) 2(mu-dppb)] ( 16) was obtained by reaction of 7 with the diphosphine dppb (1,4-bis(diphenylphosphino)butane). The molecular structures of the diolefinic dinuclear complexes [Rh 2(mu-S 2CR 2)(cod) 2] (R = Bn ( 1), (i) Pr ( 2); R 2 = -(CH 2) 4- ( 6)) and that of the cis complex 16 have been studied by X-ray diffraction.  相似文献   

11.
Chelidamic acid, 4‐hydroxy­pyridine‐2,6‐di­carboxyl­ic acid, is found to be zwitterionic in its solid monohydrate form, C7H5NO5·H2O, with the aryl­oxide and one carboxyl­ate group remaining protonated, but the other carboxyl­ate group losing its proton to the pyridine N atom. In this, it is unlike its parent, dipicolinic acid (pyridine‐2,6‐di­carboxyl­ic acid), which also crystallizes as a monohydrate, but one in which the acidic H atoms remain bound to the carboxyl­ate groups. In both structures, the water mol­ecule is a component of an extended hydrogen‐bonded network.  相似文献   

12.
A series of novel polyiron species have been prepared from the reaction of iron chloride with the 2,5-disubstituted pyridines H2L(n) (H2L1) = N,N'-bis(n-butylcarbamoyl)pyridine-2,6-dicarboxamide; H2L2 = N,N'-bis(n-ethylcarbamoyl)pyridine-2,6-dicarboxamide). By small modifications of the experimental conditions under which the reactions are carried out, it has been possible to prepare the quadruply stranded diiron(II) complex [Fe2(mu-H2L1)4(mu-Cl)2][FeCl4]2 (1), the metallamacrocycle [Fe2(mu-H2L1)2(THF)4Cl2][FeCl4]2 (2), the hexairon(III) compound [Fe6(L1)2(mu-OMe)6(mu4-O)2Cl4] (3), and the mixed-valence trinuclear iron complexes [Fe3(L(n))3(mu3-O)] (n = 1, 4; n = 2, 5). The X-ray crystal structures of 3 and 5 and magnetic studies for all the compounds are herein presented. Interestingly, the structural analysis of 5 at room temperature indicates that one of the iron centers is Fe(III) while the other two have an average valence state between Fe(II) and Fe(III). The five complexes herein presented demonstrate the great versatility that the new ligand has as a building block for the formation of supramolecular coordination assemblies.  相似文献   

13.
Reactions of LnCl3, NaBH4 and ArONa (Ar = C6H2-t-Bu3-2,4,6) in a molar ratio of 1:3:1 in THF afforded the aryloxide lanthanide borohydrides of (ArO)Ln(BH4)2(THF)2 (Ln = Yb (1), Er (2)). They were characterized by elemental analysis, infrared spectrum and X-ray crystallography. The two complexes are neutral and isostructural. The lanthanide atom is nine-coordinated by an aryloxide ligand, two borohydride ligands and two THF ligands in a trigonal bipyramidal geometry. Both of the BH4 ligands in each monomeric complex are η3-coordinated. These complexes displayed moderate high catalytic activities for the polymerization of methyl methacrylate. The polymerization temperature had great influence on the catalysis. At about 0 °C, the catalysts showed the polymerization activity best.  相似文献   

14.
Reactions of triphenyltin chloride or isothiocyanate with lactum yield complexes of the type Ph3SnX · L (X = Cl or NCS, L = lactam). The coordination of the carbonyl group of lactams to the tin atom has been suggested by IR data and confirmed by X-ray diffraction analysis.The crystal and molecular structure of triphenyltin chloride-ϵ-caprolactam complex, C24H26ClNOSn, has been determined by X-ray diffraction analysis. The crystals are orthorhombic, space group Pbca, a 18.839(1), b 14.392(2), c 29.059(6) Å, Z = 8; R = 0.047, Rw = 0.058 for 3579 unique reflections. The geometry around the tin atom is trigonal bipyramidal with the three phenyl groups defining the equatorial plane and a chlorine ion and a carbonyl oxygen of the caprolactam ligand occupying the axial positions.  相似文献   

15.
A series of heteroleptic scandium SALEN complexes, [(SALEN)Sc(mu-Cl)]2 and (SALEN)Sc[N(SiHMe2)2] is obtained via amine elimination reactions using [Sc(N(i)Pr2)2(mu-Cl)(THF)]2 and Sc[N(SiHMe2)2]3(THF) as metal precursors, respectively. H(2)SALEN ligand precursors comprising H2Salen [(1,2-ethandiyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol], H2Salpren [(2,2-dimethylpropanediyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol], H2Salcyc [(1R,2R)-(-)-1,2-cyclohexanediyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol] and H2Salphen [((1S,2S)-(-)-1,2-diphenylethandiyl)bis(nitrilomethylidyne)bis(2,4-di-tert-butyl)phenol] are selected according to solubility and ligand backbone variation ("=N-(R)-N=" bite angle) criteria. Consideration is given to the feasibility of [Cl --> NR2] and [N(SiHMe2)2--> OSiR3] secondary ligand exchange reactions. X-ray crystal structure analyses of donor-free (Salpren)Sc(N(i)Pr2), (R,R)-(Salcyc)Sc[N(SiHMe2)2], (Salen)Sc(OSi(t)BuPh2) and (Salphen)Sc(OSiH(t)Bu2) reveal (i) a very short Sc-N bond distance of 2.000(3) A, (ii) weak beta(Si-H)(amido)-Sc agostic interactions and (iii) an exclusive intramolecularly tetradentate and intrinsically bent coordination mode of the SALEN ligands with angle(Ph,Ph) dihedral angles and Sc-[N(2)O(2)] distances in the 124.27(9)-127.7(3) degrees and 0.638(1)-0.688(1) A range, respectively.  相似文献   

16.
Xu G  Wang ZM  He Z  Lü Z  Liao CS  Yan CH 《Inorganic chemistry》2002,41(25):6802-6807
A series of nonanuclear lanthanide oxo-hydroxo complexes of the general formula [Ln(9)(mu(4)-O)(2)(mu(3)-OH)(8)(mu-BA)(8)(BA)(8)](-)[HN(CH(2)CH(3))(3)](+).(CH(3)OH)(2)(CHCl(3)) (BA = benzoylacetone; Ln = Sm, 1; Eu, 2; Gd, 3; Dy, 4; Er, 5) were prepared by the reaction of hydrous lanthanide trichlorides with benzoylacetone in the presence of triethylamine in methanol and recrystallized from chloroform/methanol (1:10) at room temperature. These five compounds are isomorphous. Crystal data for 1: cubic, Pn3n; T = 180 K; a = 33.8652(4) A; V = 38838.4(8) A(3); Z = 6; D(calcd) = 1.125 g cm(-)(3); R1 = 3.37%. Crystal data for 2: cubic, Pn3n; T = 180 K; a = 33.8252(8) A; V = 38700.9(16) A(3); Z = 6; D(calcd) = 1.133 g cm(-)(3); R1 = 4.97%. Crystal data for 3: cubic, Pn3n; T = 180 K; a = 33.7061(6) A; V = 38293.5(12) A(3); Z = 6; D(calcd) = 1.157 g cm(-)(3); R1 = 5.13%. Crystal data for 4: cubic, Pn3n; T = 180 K; a = 33.5900(7) A; V = 37899.2(14) A(3); Z = 6; D(calcd) = 1.182 g cm(-)(3); R1 = 4.03%. Crystal data for 5: cubic, Pn3n; T = 180 K; a = 33.5054(8) A; V = 37613.6(16) A(3); Z = 6; D(calcd) = 1.202 g cm(-)(3); R1 = 4.86%. The core of the anionic cluster comprises two vertex-sharing square-pyramidal [Ln(5)(mu(4)-O)(mu(3)-OH)(4)](9+) units. The compounds were characterized by elemental analysis, IR, fast atom bombardment mass spectra, thermogravimetry, and differential scanning calorimetry. The thermal analysis indicated that the nonanuclear species were stable up to 150 degrees C. Luminescence spectra of 2 and magnetic properties of 1-5 were also studied.  相似文献   

17.
A novel ruthenium-mediated coupling reaction of a carboranyl with a cyclopentadienyl was discovered for the first time, leading to a brand new doubly-bridged cyclopentadienyl-carboranyl ligand bearing two five-membered rings and to a new type of chiral ruthenium complex.  相似文献   

18.
Permethylated cyclopentadienyl dinuclear constrained geometry titanium catalyst, [μ-(C6H4)2-2,2′]{(η5-C5Me3)[1-Me2Si(η1-N-tBu)](TiCl2)}2 (BPTi2) linked by a biphenylene bridge was synthesized and tested in ethylene and ethylene/1-octene polymerizations upon activation by TIBA (triisobutylaluminum)/[Ph3C][B(C6F5)4]. When compared with the corresponding highly active, mononuclear analogs, Me2Si(η5-2-PhC5Me3)(η1-N-tBu)TiCl2 (PhTi1) and Me2Si(η5-C5Me4)(η1-N-tBu)TiCl2 (MeTi1), BPTi2 exhibits significantly increased molecular weight of polymer (>two-fold), as well as high level of activity and 1-octene incorporations in ethylene and ethylene/1-octene polymerizations. Although the lower activity was observed at high 1-octene feeds, the combined effects of rigidity and electronic conjugation induced by the biphenylene bridge might be responsible for the observed polymerization properties of BPTi2.  相似文献   

19.
A potentially pentadentate hydrazone ligand, N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazide (HL), was prepared from the condensation reaction of nicotinohydrazide and acetylpyrazine. Reactions of HL with MnCl2, Mn(CH3COO)2 and Cd(CH3COO)2 afforded three metal complexes, namely dichlorido{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazide‐κ2N′,O}manganese(II), [MnCl2(C12H11N5O)], (I), bis{N′‐[1‐(pyrazin‐2‐yl‐κN1)ethylidene]nicotinohydrazidato‐κ2N′,O]manganese(II), [Mn(C12H10N5O)2], (II), and poly[[(acetato‐κ2O,O′){μ3N′‐[1‐(pyrazin‐2‐yl‐κ2N1:N4)ethylidene]nicotinohydrazidato‐κ3N′,O:N1}cadmium(II)] chloroform disolvate], {[Cd(C12H10N5O)(CH3COO)]·2CHCl3}n, (III), respectively. Complex (I) has a mononuclear structure, the MnII centre adopting a distorted square‐pyramidal coordination. Complex (II) also has a mononuclear structure, with the MnII centre occupying a special position (C2 symmetry) and adopting a distorted octahedral coordination environment, which is defined by two O atoms and four N atoms from two N′‐[1‐(pyrazin‐2‐yl)ethylidene]nicotinohydrazidate (L) ligands related via a crystallographic twofold axis. Complex (III) features a unique three‐dimensional network with rectangular channels, and the L ligand also serves as a counter‐anion. The coordination geometry of the CdII centre is pentagonal bipyramidal. This study demonstrates that HL, which can act as either a neutral or a mono‐anionic ligand, is useful in the construction of interesting metal–organic compounds.  相似文献   

20.
Permethylated cyclopentadienyl dinuclear constrained geometry titanium catalyst, [μ-(C6H4)2-2,2′]{(η5-C5Me3)[1-Me2Si(η1-N-tBu)](TiCl2)}2 (BPTi2) linked by a biphenylene bridge was synthesized and tested in ethylene and ethylene/1-octene polymerizations upon activation by TIBA (triisobutylaluminum)/[Ph3C][B(C6F5)4]. When compared with the corresponding highly active, mononuclear analogs, Me2Si(η5-2-PhC5Me3)(η1-N-tBu)TiCl2 (PhTi1) and Me2Si(η5-C5Me4)(η1-N-tBu)TiCl2 (MeTi1), BPTi2 exhibits significantly increased molecular weight of polymer (>two-fold), as well as high level of activity and 1-octene incorporations in ethylene and ethylene/1-octene polymerizations. Although the lower activity was observed at high 1-octene feeds, the combined effects of rigidity and electronic conjugation induced by the biphenylene bridge might be responsible for the observed polymerization properties of BPTi2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号