首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lewis acid catalysis in supercritical carbon dioxide (CO(2)) was investigated. While solubility of most organic materials is low in scCO(2), poly(ethylene glycol) derivatives or perfluoroalkylbenzenes were found to work as surfactants to dissolve organic materials in scCO(2). In the presence of these molecules, Lewis acid catalyzed organic reactions such as aldol-, Mannich-, and Friedel-Crafts-type reactions proceeded smoothly in scCO(2). Formation of emulsions was observed in these reactions, and the systems were studied in detail.  相似文献   

2.
Supercritical carbon dioxide (scCO2) is an effective reaction medium to perform the oxidation of primary and secondary aliphatic alcohols to the corresponding carbonyl compounds with chromium trioxide supported on silica. These reactions were performed by flowing a solution of the alcohol in scCO2 through a column containing the supported reagent and recovering the product by depressurization. This method avoids the use of organic solvents and the contamination of the products with chromium species.  相似文献   

3.
Electrochemical fixation of atmospheric pressure of carbon dioxide to organic compounds is a useful and attractive method for synthesizing of various carboxylic acids. Electrochemical fixation of carbon dioxide, electrochemical carboxylation, organic halides, organic triflates, alkenes, aromatic compounds, and carbonyl compounds can readily occur in the presence of an atmospheric pressure of carbon dioxide to form the corresponding carboxylic acids with high yields, when a sacrificial anode such as magnesium or aluminum is used in the electrolysis. The electrochemical carboxylation of vinyl bromides was successfully applied for the synthesis of the precursor of nonsteroidal anti-inflammatory agents such as ibuprofen and naproxen. On the other hand, supercritical carbon dioxide (scCO2) has significant potential as an environmentally benign solvent in organic synthesis and it could be used both as a solvent and as a reagent in these electrochemical carboxylations by using a small amount of cosolvent.  相似文献   

4.
Organic reactions in supercritical carbon dioxide (scCO2) have facilitated great progress in recent years . ScCO2, as an environmentally friendly reaction medium, may be a substitute for 1 volatile and toxic organic solvents and show some special advantages. Firstly, CO2 is inexpensive, nonflammable, nontoxic and chemical inert under many conditions. Secondly, scCO2 possesses hybrid properties of both liquid and gas, to the advantage of some reactions involving gaseous reagents. Control o…  相似文献   

5.
Discontinuous molecular dynamics simulations are performed on surfactant (HmTn)/solvent systems modeled as a mixture of single-sphere solvent molecules and freely jointed surfactant chains composed of m slightly solvent-philic head spheres (H) and n solvent-philic tail spheres (T), all of the same size. We use a square-well potential to account for the head-head, head-solvent, tail-tail, and tail-solvent interactions and a hard-sphere potential for the head-tail and solvent-solvent interactions. We first simulate homopolymer/supercritical CO2 (scCO2) systems to establish the appropriate interaction parameters for a surfactant/scCO2 system. Next, we simulate surfactant/scCO2 systems and explore the effect of the surfactant volume fraction, packing fraction, and temperature on the phase behavior. The transition from the two-phase region to the one-phase region is located by monitoring the contrast structure factor of the equilibrated surfactant/scCO2 system, and the micelle to unimer transition is located by monitoring the aggregate size distribution of the equilibrated surfactant/scCO2 system. We find a two-phase region, a micelle phase, and a unimer phase with increasing packing fraction at fixed temperature or with increasing temperature at fixed packing fraction. The phase diagram for the surfactant/scCO2 system in the surfactant volume fraction-packing fraction plane and the density dependence of the critical micelle concentration are in qualitative agreement with experimental observations. The phase behavior of a surfactant/scCO2 system can be directly related to the solubilities of the corresponding homopolymers that serve as the head and tail blocks for the surfactant. The influence of surfactant structure (head and tail lengths) on the phase transitions is explored.  相似文献   

6.
Liquid or supercritical carbon dioxide (scCO(2)) is a versatile reaction medium for ring-opening metathesis polymerization (ROMP) and ring-closing olefin metathesis (RCM) reactions using well-defined metal catalysts. The molybdenum alkylidene complex 1 and ruthenium carbenes 2 and 3 bearing PCy(3) or N-heterocyclic carbene ligands, respectively, can be used and are found to exhibit efficiency similar to that in chlorinated organic solvents. While compound 1 is readily soluble in scCO(2), complexes 2 and 3 behave like heterogeneous catalysts in this reaction medium. Importantly, however, the unique properties of scCO(2) provide significant advantages beyond simple solvent replacement. This pertains to highly convenient workup procedures both for polymeric and low molecular weight products, to catalyst immobilization, to reaction tuning by density control (RCM versus acyclic diene metathesis polymerization), and to applications of scCO(2) as a protective medium for basic amine functions. The latter phenomenon is explained by the reversible formation of the corresponding carbamic acid as evidenced by (1)H NMR data obtained in compressed CO(2). Together with its environmentally and toxicologically benign character, these unique physicochemical features sum up to a very attractive solvent profile of carbon dioxide for sustainable synthesis and production.  相似文献   

7.
Liposomes of various phospholipids were prepared using an improved supercritical reverse phase evaporation (ISCRPE) method that utilizes supercritical carbon dioxide (scCO(2)) as an alternative to organic solvents. Using this method, in the absence of any organic solvent including ethanol, the maximum trapping efficiency of glucose reached 36% for 20 mM l-alpha-dioleoylphosphatidylcholine (DOPC), compared to less than 10% using the Bangham method. Liposomes prepared by the ISCRPE method were highly stable for one month at room temperature. Freeze fractured TEM observations, osmotic shrinkage measurements, and DSC measurements revealed that the liposomes prepared by the ISCRPE method are unilamellar vesicles with loosely packed phospholipids. Comparison of nitrogen with scCO(2) revealed that the presence of CO(2) is necessary for the formation of liposomes.  相似文献   

8.
A conductive polypyrrole (PPy) film was successfully synthesized in a homogeneous supercritical carbon dioxide (scCO2)/acetonitrile (AN) system. The occurrence of a homogeneous supercritical state was confirmed by observations of the phase behavior of the system through a high-pressure cell with a viewing window. The concentration of a supporting electrolyte, tetrabutylammonium hexafluorophosphate (TBAPF6), significantly changed the phase behavior of the scCO2/AN system. The polymerization rate of the film in that system decreased with further addition of CO2. This result suggested that the low viscosity of scCO2 did not play an important role in improving the growth rate of the PPy film. The low polymerization rate might have been due to the electron-transfer resistance arising from the low dielectric constant of scCO2/AN mixture. The roughness of the film prepared in the homogeneous scCO2/AN system was 1/10 that synthesized in AN itself as a solvent. The slow growth of film and the high diffusion rate of the monomer seemed to account for the smooth flat film formation.  相似文献   

9.
Supercritical carbon dioxide(scCO2)and its subcritical analogue are now widely used as environ mentally-friendly substitutes of conventional organic solvents in chemical synthesis[1-4]  相似文献   

10.
While incompatible block copolymers commonly assemble into several established classical or complex morphologies, highly asymmetric poly(ferrocenyldimethylsilane-b-dimethylsiloxane) (PFS-b-PDMS) diblock copolymers can also self-organize into high-aspect-ratio nanotubes with PDMS corona in the presence of PDMS-selective organic solvents. Exposure of these nanotubes on a carbon substrate to supercritical carbon dioxide (scCO2), also a PDMS-selective solvent, appears to promote partial dissolution of the copolymer molecules. At sufficiently high copolymer concentrations, the dissolved molecules subsequently re-organize within the scCO2 environment to form new copolymer nanostructures that redeposit on the substrate upon scCO2 depressurization. Transmission electron microscopy reveals that micelles form under all the conditions examined here, whereas nanotubes coalesce and vesicles develop only at relatively high temperatures. The extent to which the copolymer nanotubes dissolve and the size distribution of the replacement micelles are sensitive to exposure conditions. These results suggest that the phase behavior of PFS-b-PDMS diblock copolymers in scCO2 may be remarkably rich and easily tunable.  相似文献   

11.
Heterogeneous strong base catalysis for the intramolecular Tishchenko reaction of aromatic 1,2-dicarbaldehydes to the corresponding phthalides in supercritical CO2CscCO2 has been realized with mesoporous alumina containing SO4(2-) ions in the alumina framework (mesoAl2O3/SO4(2-)). Infrared spectroscopy of pyrrole adsorbed on the alumina and strong poisoning by a weak Br?nsted acid of methanol revealed that the SO4(2-) ions in the framework slightly suppressed the average strength of base sites (O2-) on mesoAl2O3/SO4(2-), but there exists a small number of strong base sites that promote the Tishchenko reaction in scCO2. Although the intramolecular Tishchenko reaction of phthalaldehyde to phthalide in scCO2 was somewhat slower than those in organic solvents such as tetrahydrofuran (THF) and benzene, the addition of a small amount of THF as a cosolvent remarkably increased the reaction rate; the reaction in the scCO2-THF system proceeded 1.5-fold faster than those in pure benzene and THF solvents.  相似文献   

12.
A novel continuous-flow scCO(2) process for kinetic resolution of racemic alcohols can be performed with an immobilized lipase to lead to a quantitative mixture of the corresponding optically active acetates with up to 99% ee and unreacted alcohols with up to 99% ee, in which the productivity of the optically active compounds was improved by over 400 times compared to the corresponding batch reaction using scCO(2).  相似文献   

13.
Liquid phase hydrogenation of phenol over Pt/C catalysts was investigated under conventional conditions and supercritical carbon dioxide (scCO2). The equivalent ration of hydrogen to phenol shows a significant effect on the product selectivity. Hydrogenation of phenol in different solvents was also studied, the experimental results show that polarity of solvents influences the yield of cyclohexanone remarkably, scCO2 has the highest one. Catalytic hydrogenation of phenol in scCO2 or sub-scCO2 was emphatically researched. The result is that near the critical point of CO2 phenol has higher reaction activity than that of normal organic solvents, cyclohexanone has 47% in yield and 87% in selectivity.  相似文献   

14.
The proton transfer from 2-naphthol to aliphatic amines was studied in supercritical CO(2) (scCO(2)) and in cyclohexane as reference solvent, by absorption and fluorescence spectroscopy and by time-resolved emission. Irradiation of 2-naphthol in scCO(2) in the presence of ethyldiisopropylamine shows dynamic fluorescence quenching of the acidic form of 2-naphthol and emission from the basic form. Fluorescence excitation spectra show that the emission of the basic form is originated upon excitation of the acidic form. The interaction between 2-naphthol and the amines is described by the formation of a complex with proton donor-acceptor character in the ground and excited states of 2-naphthol. The acidity increase of 2-naphthol upon electronic excitation to the first excited singlet in scCO(2) is as high as in water. Proton transfer quantum yields of 0.6 can be easily achieved in scCO(2). The results have implications for carrying out acid-base catalyzed reactions in scCO(2).  相似文献   

15.
We investigated the effect of adding acetonitrile to supercritical carbon dioxide (scCO(2)) in the presence of rhodamine B. This spectroscopic investigation of the scCO(2)/acetonitrile, rhodamine B/scCO(2), and rhodamine B/acetonitrile interactions revealed that rhodamine B, which possesses a temperature dependent equilibrium between a zwitterionic form and a neutral form, had a strong affect on the cybotactic region. To confirm that this effect was only dependent upon the rhodamine B/acetonitrile interactions and not merely due to the bulk-phase behavior of the scCO(2), we measured the compressibility of the scCO(2)/acetonitrile mixture and found it to be independent of the acetonitrile concentration to less than approximately 0.047 mol fraction. We fit the compressibility data using the Peng-Robinson equation of state because it is most appropriate for fluids in the region between 1.72 and 12.45 MPa and between 313 and 333 K.  相似文献   

16.
1 Introduction
Nowadays, green chemistry has received increased attention. The use of water and scCO2 as a solvent or reagent is an important field for organic reactions and green chemistry both in laboratory and industry.  相似文献   

17.
In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.  相似文献   

18.
The nucleophilic displacement on n-octylmesylate (n-C(8)H(17)OSO(2)CH(3), 1) with four different anions (I(-), Br(-), N(3)(-), and SCN(-)) is investigated under liquid-supercritical phase-transfer catalysis (LSc-PTC) conditions, i.e. in a biphase system of supercritical carbon dioxide (scCO(2)) and water, in the presence of both silica supported and conventional onium salts. The CO(2) pressure greatly affects the concentration of 1 in the sc-phase and plays a major role on its conversion. For example, at 50 degrees C and with a supported PT-catalyst, the conversion of 1 into n-octyl iodide drops by a factor of 5 as the CO(2) pressure is increased from 80 to 150 bar, while in the same pressure range, the solubility of n-octylmesylate in scCO(2) shows a 6-fold increase, indicating that the reagent is desorbed from the catalyst. Under LSc-PTC conditions, pseudo-first-order kinetic rate constants, evaluated for the investigated reactions, show that the performance of scCO(2) as a PTC solvent and the relative nucleophilicity order of the anions (N(3)(-) > I(-) > or = Br(-) > SCN(-)) are comparable to those of toluene and n-heptane. The behavior of conventional phosphonium salts in the scCO(2)/H(2)O biphase system suggests that the reaction may take place either within small droplets of PT-catalyst containing water or in a separate third liquid phase of the PT-catalyst itself.  相似文献   

19.
Suzuki cross-coupling reactions are effected in both conventional organic solvents, under continuous flow conditions at 70 degree C, and in batch mode in supercritical carbon dioxide (scCO2), at temperatures as low as 40 degrees C in the presence of palladium(II) acetate microencapsulated in polyurea [PdEnCat] and tetra-n-butylammonium salts.  相似文献   

20.
超临界CO2法制备头孢唑啉钠脂质体   总被引:6,自引:0,他引:6  
采用超临界CO2(scCO2)流体代替有机溶剂一步法制备了头孢唑啉钠药物载体脂质体. 研究了该脂质体的尺寸、稳定性和药物的包封率. 结果表明, 脂质体的尺寸和稳定性依赖于制备压力, 脂质体对头孢唑啉钠的包封率与乙醇和脂浓度有关, 采用超临界CO2法制备脂质体的药物包封率比采用薄膜分散法(Bangham method)制备的包封率高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号