首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrocatalytic activities of a wide range of ordered intermetallic phases toward a variety of potential fuels have been studied, and results have been compared to those of a pure polycrystalline platinum (Pt(pc)) electrode. A significant number of the ordered intermetallic phases exhibited enhanced electrocatalytic activity when compared to that of Pt, in terms of both oxidation onset potential and current density. The PtBi, PtIn, and PtPb ordered intermetallic phases appeared to be the most promising electrocatalysts tested thus far for fuel cell applications. PtPb, in particular, showed an onset potential that was 100 mV less positive and a peak current density approximately 40 times higher than those observed for Pt in the case of methanol oxidation. The ability to control the geometric and electronic structures of the electrocatalytic material by using ordered intermetallic phases has been shown to be a promising direction of inquiry in the search for superior electrocatalysts for fuel cell applications.  相似文献   

2.
金属间化合物PtBi对甲酸的电催化氧化   总被引:2,自引:0,他引:2       下载免费PDF全文
从 1839 年 Grove 首次提出了燃料电池理论, 并 证实了氢/氧燃料电池能直接把化学能转化为电能 以来, 氢/氧燃料电池迅速发展起来。但是由于氢气 在储存、运输以及供应方面存在很多难以克服的困 难, 而有机分子的重整制氢成本太高以及电池构造 复杂等因素[1,2], 使得人们将目光  相似文献   

3.
Intermetallic PtPb nanoparticles have been synthesized by two solution-phase reduction methods. In the first (PtPb-B), Pt and Pb salts were reduced by sodium borohydride in methanol at room temperature. In the second (PtPb-N), metal-organic Pt and Pb precursors were reduced by sodium naphthalide in diglyme at 135 degrees C. Both methods produced small agglomerated nanoparticles of the ordered intermetallic PtPb (mean crystal domain size <15 nm) which were characterized by pXRD, SEM, UHV-STEM, BET, EDX, and electron diffraction. The electrocatalytic activity of PtPb nanoparticles produced by both methods toward formic acid and methanol oxidation was investigated and compared to Pt and PtRu. Both PtPb-B and PtPb-N nanoparticles exhibited enhanced electrocatalytic activity compared to commercially available Pt black and PtRu nanoparticles. For formic acid oxidation, the PtPb nanoparticles exhibited considerably lower onset potentials and higher current densities than Pt or PtRu. For methanol oxidation, the PtPb nanoparticles had onset potentials slightly positive of PtRu but exhibited higher current densities at potentials about 100 mV positive of onset. The general applicability of these methods for the synthesis of nanoparticles of ordered intermetallic phases is discussed.  相似文献   

4.
采用氩弧熔炼后热处理方法制备了PtBi金属间化合物材料.采用循环伏安法和旋转圆盘电极进行电化学性能测试.通过在0.5 mol•L-1 H2SO4+0.25 mol•L-1 CH3OH溶液中对氧还原的起始电位和电流密度大小比较发现,与光滑铂电极相比,PtBi金属间化合物具有良好的氧还原催化性能和抗甲醇中毒性能.从结构方面分析了PtBi具有抗甲醇中毒性能的原因,认为是PtBi中Pt-Pt的间距大,不利于甲醇的吸附解离. X射线光电子能谱(XPS)结果表明,PtBi材料中Pt的d电子空穴增加,可能是导致PtBi电极表面氧还原电流增大的原因.  相似文献   

5.
王红森 《化学学报》2002,60(4):606-611
利用微分电化学质谱(DEMS)研究了Mo修饰的Pt电极上CO、甲醛和甲醇的电催 化氧化,证实了Mo(IV)是催化活性样品,而且它只对弱吸附CO的氧化起催化作用, 对强吸附CO的氧化没有催化活性。在低于0.4 V的电位下,吸附在Pt电极上的Mo结 甲醇和甲醛的催化氧化是通过弱吸附CO的氧化路径进行的。  相似文献   

6.
在离子液体1-乙基咪唑三氟乙酸盐(HElmTfa)中,采用循环伏安法在铂电极表面修饰聚吡咯(PPY),制得PPy-HEImTfa/Pt,并研究了其对甲酸的电催化氧化性能.与相同条件下的铂基底电极相比,PPy-HEImTfa/Pt对甲酸的电催化氧化性能有很大的提高.原位红外光谱表明,PPy-HElmTfa能降低中间体CO等对铂电极的毒化作用,促进甲酸直接氧化生成CO_2.  相似文献   

7.
The electrocatalytic activity of a spontaneously tin-modified Pt catalyst, fabricated through a simple dip-coating method under open-circuit conditions and characterized using surface analysis methods, was studied in electrooxidation reactions of a preadsorbed CO monolayer and continuous oxidation of methanol, formic acid, and formaldehyde in the potentiodynamic and potentiostatic modes. The catalytic activity of the tin-modified Pt surface is compared with that of a polycrystalline Pt electrode. Spontaneously Sn-modified Pt catalyst shows a superior activity toward adsorbed CO oxidation and thus can be promising for PEFC applications. The methanol oxidation rate is not enhanced on the Sn-modified Pt surface, compared to the Pt electrode. Formic acid oxidation is enhanced in the low potential region on the Sn-modified surface, compared to the Pt electrode. The formaldehyde oxidation rate is dramatically increased by modifying tin species at the most negative potentials, where anodic formaldehyde oxidation is completely suppressed on the pure Pt electrode. The results are discussed in terms of poisoning CO intermediate formation resulting from dehydrogenation of organic molecules on Pt sites, and oxidation of poisoning adsorbed CO species via the surface reaction with OH adsorbed on neighboring Sn sites.  相似文献   

8.
The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).  相似文献   

9.
The influence of the iridium oxide thin film on the electrocatalytic properties of platinum nanoparticles was investigated using the electro-oxidation of methanol and CO as a probe. The presence of the IrO(2) thin film leads to the homogeneous dispersion of Pt nanoparticles. For comparison, polycrystalline platinum and Pt nanoparticles dispersed on a Ti substrate in the absence of an IrO(2) layer (Ti/Pt) were also investigated in this study. Inverted and enhanced CO bipolar peaks were observed using an in situ electrochemical Fourier transform infrared technique during the methanol oxidation on the Pt nanoparticles dispersed on a Ti substrate. Electrochemical impedance studies showed that the charge transfer resistance was significantly lower for the Ti/IrO(2)/Pt electrode compared with that of the massive Pt and Ti/Pt nanoparticles. The presence of the IrO(2) thin film not only greatly increases the active surface area but also promotes CO oxidation at a much lower electrode potential, thus, significantly enhancing the electrocatalytic activity of Pt nanoparticles toward methanol electro-oxidation.  相似文献   

10.
甲醛和甲酸在Pt/Sb_(ad)电极上的电催化氧化   总被引:2,自引:0,他引:2  
李红  江琳才  蒋雄 《电化学》1995,1(1):56-64
研究了甲醛和甲酸在Pt/Sb_(ad)电极上的电催化氧化,在甲醛的情况下,在电位约0.7V处出现一个氧化峰;在甲酸的情况下,第一氢化峰的峰电流增加约4倍.当覆盖度为0.75±0.05时,电极显现最高活性,吸附锑原子在铂电极上具有催化活性的主要原因是通过几何效应阻止吸附毒物(PT- ̄*C=O)的生成。此外,讨论了电解时间、沉积电位、介质等因素对Pt/Sb_(ad)电极催化活性的影响,提出了在较低电位下,甲醛和甲酸在Pt/Sb_(ad)电极上催化氧化的机理.  相似文献   

11.
应用循环伏安法(CV),扫描电子显微镜(SEM)和电化学原位红外反射光谱(in situFTIRS)研究了不同介质对碳载铂纳米薄膜电极(Pt/GC)的表面结构以及该薄膜电极对甲酸电催化氧化性能的影响.结果表明,使用不同介质的镀铂溶液,均可电沉积出分布较为均匀的Pt粒子,但其尺寸与形貌却相差很大.当以H2SO4作介质,由循环伏安法于玻碳电极上电沉积Pt得到的(Pt/GC1)电极,其Pt粒子粒径约100~200 nm;而在HClO4介质得到的(Pt/GC2)电极,则含有两种Pt微晶:其一是立方体形,粒径约200 nm,其二为菜花状,粒径约400 nm.电化学循环伏安和原位红外反射光谱测试指明,不同介质制备的Pt/GC电极对甲酸的电催化氧化均表现出与本体铂电极(Pt)相类似的特性,即可通过活性中间体或毒性中间体将甲酸氧化至CO2,但不同结构的Pt/GC电极具有不同的电催化活性.进一步以Sb或Pb修饰Pt/GC电极,不仅可以有效地抑制毒性中间体CO的生成,而且还能显著提高其电催化活性.比较本文研究的7种电极,其电催化活性顺序依次为:Sb-Pt/GC2>Pb-Pt/GC2>Pb-Pt/GC1>Sb-Pt/GC1>Pt/GC2>Pt/GC1>Pt.  相似文献   

12.
Differential electrochemical mass spectrometry (DEMS) is used to investigate the reaction of electroreduction of CO2 on platinum porous electrode in acidic media. This technique, which gives molecular specificity, permits the reaction products to be followed concurrently with potential and time. These results showed for the first time the on-line production of methanol in acidic media using a Pt electrodeposited electrode. Reduction of CO2 in perchloric acid on Pt occurs in the H2 evolution region leading to the formation of formic acid methanol and traces of methane. Experiments using CO show that this substance is the intermediate of the pathway leading to methanol.  相似文献   

13.
Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H(12)COOH and H(13)COOH) reveals that formic acid is oxidized to CO(2) via adsorbed formate and the decomposition (oxidation) of formate to CO(2) is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.  相似文献   

14.
The composition of ordered intermetallic nanoparticles (PtBi and PtPb) has been quantitatively studied by in situ X-ray fluorescence (XRF) during active electrochemical control in solutions of supporting electrolyte and small organic molecules (SOMs). Because the Pt L(β1,2) lines and the Bi L(α1,2) lines are only separated by 200 eV, an energy-dispersive detector and a multiple-channel analyzer (MCA) were used to record the major fluorescent emission lines from these two elements. The molar ratios of platinum to the less-noble elements (Bi, Pb) in the nanoparticles dramatically changed as a function of the applied upper limit potentials (E(ulp)) in cyclic voltammetric (CV) characterization. Similar to previous investigations for bulk intermetallic surfaces, the less-noble elements leached out from the surfaces of the intermetallic nanoparticles. For PtBi nanoparticles, the ratios of fluorescence intensities of Pt/Bi in the samples were 0.42, 0.96, and 1.36 for E(ulp)=+0.40, +0.80, and 1.20 V, respectively, while cycling the potential from -0.20 V to the E(ulp) value for 10 cycles. The leaching-out process of the less-noble elements occurred at more negative E(ulp) values than expected. After cycling to relatively positive E(ulp) values, nonuniform PtM (M=Bi of Pb) nanoparticles formed with a Pt-rich shell and intermetallic PtM core. When the supporting solutions contained active fuel molecules in addition to the intermetallic nanoparticles (formic acid for PtBi, formic acid and methanol for PtPb), kinetic stabilization effects were observed for E(ulp)=+0.80 V, in a way similar to the response of the bulk materials. It was of great importance to quantitatively explore the change in composition and structure of the intermetallic nanoparticles under active electrochemical control. More importantly, this approach represents a simple, universal, and multifunctional method for the study of multi-element nanoparticles as electrocatalysts. This is, to our knowledge, the first report of nondestructive, quantitative characterization of bimetallic or multi-elemental nanoparticles electrocatalysts under active electrochemical control.  相似文献   

15.
夏兴华 《电化学》1997,3(1):26-29
应用现场红外反射光谱和微分电化学质谱研究了甲到在多孔Pt上吸附质的性质。伏安结果显示了甲酸在多孔Pt上吸附质的氧经与吸附电位和吸附时间有关。在线质谱结果表明从甲酸吸附质氧化成二氧化碳所需要的电子数(ne)与吸附电位无关。显著地ne=2.2说明了甲酸吸附质是由CO和COH组成,而不是只有单一的CO或者COH,另一方面,在1262cm^-1和2048cm^-1出现的现场红外光谱带证实了甲酸在多孔Pt上  相似文献   

16.
采用氩弧熔炼和热处理方法获得PtSb有序金属间化合物材料. 用循环伏安和计时电流技术进行电化学性能测试. 在含有0. 25 mol•L-1 CH3CH2OH的硫酸溶液中, 通过对乙醇电氧化的起始电位和电流密度大小的比较发现, PtSb金属间化合物具有良好的催化乙醇氧化性能. 利用XRD和XPS技术分析了晶体结构和电子结构. 采用不同扫描速率下的循环伏安技术得到乙醇氧化的电子交换系数(α), 发现C2H5OH在PtSb催化剂表面上反应时的α远远大于在Pt电极表面的.  相似文献   

17.
Lin WF  Christensen PA 《Faraday discussions》2002,(121):267-84; discussion 331-64
The adsorption and electro-oxidation of formaldehyde, formic acid and methanol at the Ru(0001) electrode in perchloric acid solution have been studied as a function of temperature, potential and time using in situ FTIR spectroscopy, and the results interpreted in terms of the surface chemistry of the Ru(000 1) electrode and compared to those obtained during our previous studies on the adsorption of CO under the same conditions. It was found that no dissociative adsorption or electro-oxidation of methanol takes place at Ru(0001) at potentials < 900 mV vs. Ag/AgCl, and at all three temperatures employed, 10, 25 and 50 degrees C. However, both formaldehyde and formic acid did undergo dissociative adsorption, even at -200 mV, to form linear (CO(L)) and 3-fold-hollow (COH) binding CO adsorbates. In contrast to the adsorption of CO, it was found that increasing the temperature to 50 degrees C markedly increased the amount of CO adsorbates formed on the Ru(0001) surface from the adsorption of both formaldehyde and formic acid. On increasing the potential, the electro-oxidation of the CO adsorbates to CO2 took place via reaction with the active (1 x 1)-O oxide. Formic acid was detected as a partial oxidation product during formaldehyde electro-oxidation. At all three temperatures employed, it was found that adsorbed CO species were formed from the adsorption of both formic acid and formaldehyde, and were oxidised to CO2 faster than was observed in the experiments involving CO adsorbed from CO(g), suggesting a higher mobility of the CO adsorbates formed from the adsorption of the HCOOH and HCHO. At potentials > 1000 mV, both the oxidation of formic acid to CO2 and the oxidation of formaldehyde to both CO2 and formic acid were significantly increased, and the oxidation of methanol to CO2 and methyl formate was observed, all of which were attributed to the formation of an active RuO2 phase on the Ru(0001) surface.  相似文献   

18.
我们通过热注入的方法制备了一种高CO耐性的金属间PtBi纳米片。所制备的金属间PtBi纳米片在甲醇氧化反应(MOR)中展现出优异的催化性能和良好的稳定性能,最大的质量活性高达4.09 A·mgPt-1,接近商业Pt/C的3.2倍。计时电流-时间(I-t)稳定性测试之后,活性仅仅衰减5.7%,远低于商业Pt/C。CO吸附-脱附(CO-Stripping)曲线和循环伏安演变(CV-Evolution)曲线证实了金属间PtBi纳米片高的CO耐受性。  相似文献   

19.
The catalytic behavior of stainless steel (SS) electrode modified by a thin film of polyaniline (PANI) containing platinum particles was studied for electrooxidation of methanol and compared with a platinated Pt/PANI electrode in acidic aqueous solution. Cyclic voltammetry (CV), chronoamperometry, CO stripping techniques were used to investigate electrochemical properties and electrocatalytic activity of SS/PANI/Pt and Pt/PANI/Pt electrodes. The morphology and particle size of Pt catalysts were characterized by Transmission Electron Microscopy (TEM) measurement. The effects of various parameters such as thickness of polymer film, medium temperature and stability of the modified electrodes on methanol oxidation were also investigated. The results indicated that the modified SS electrode exhibited a considerably high electrocatalytic activity on the methanol oxidation as well as the modified Pt electrode.  相似文献   

20.
采用循环伏安(CV)法、计时电流法和电化学原位表面增强拉曼散射光谱(SERS)技术研究了甲酸在Pt-Ru/GC电极上的氧化行为, 发现甲酸在Pt-Ru/GC电极上与在粗糙Pt电极上一样, 也能自发解离出强吸附中间体CO和活性中间体—COO-. 从分子水平证实钌的加入有利于提高电极对甲酸的电催化氧化活性, 当镀液中Pt:Ru的摩尔比从10∶1变化到1∶1, CO的氧化峰电位从0.41 V负移至0.35 V, 约负移了60 mV. Pt-Ru/GC(1∶1)电极与粗糙Pt电极相比, CO在电极表面氧化完毕的电位亦负移了约200 mV. 该研究结果表明, 电化学原位表面增强拉曼散射光谱技术可望成为研究电催化反应机理的普适谱学工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号