首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single and double hydrogen atom transfers in reactions (1) and (2) in the mass spectra of ethyl benzoate, isopropyl benzoate, and isobutyl benzoate have been investigated with reference to the ortho effect: (1) [C6H5CO2R]+? → [C6H5CO2H]+? (m/z 122) + (R-H); (2) [C6H5CO2R]+? → [C6H5CO2H2]+ (m/z 123) + · (R-2H). It is demonstrated that the intermediate ion [C6H5CO2H2]+ has the protonated benzoic acid structure with the hydrogen atom on the carbonyl group.  相似文献   

2.
Water elimination from ionized n-butanol reflects near randomization of all hydrogens in ions decomposing after ~10?5s. This probably takes place in ion-neutral complexes by formation of a cyclobutane ion–H2O complex and/or rearrangement within [C4H8]+˙ in open-chain [C4H8+˙? H2O] complexes, in either case accompanied by hydrogen exchange between water and open-chain hydrocarbon moieties. Extensive hydrogen rearrangements in which restraints on conventional transition-state ring size have little apparent influence may generally be ion–neutral complex-mediated processes.  相似文献   

3.
The CH4 chemical ionization (CI) spectra of several keto-steroids are reported as well as the H2 and C3H8CI spectra of a few keto-steroids. [M + H ? H2O]+ is an abundant ion in the CH4CI spectrum of 5α-androstane-17-one and the water loss from the [M + H]+ ions does not involve the hydrogens on C-18 and only involves the C-16 hydrogens to about 10%. The major loss process has not been determined.3-Keto and 17-Keto steroids are readily distinguished by their CH4CI spectra. The effectiveness of substituents for directing attack by [CH5]+ and [C2H5]+ can be estimated:carboxyl > methoxy ? carbonyl > bromo ? chloro > hydroxy. Significant differences are observed in the H2CI spectra of two 5α-vs. 5β-steroids. Propane CI Spectra are similar to methane CI spectra, but show generally less fragmentation.  相似文献   

4.
Mass spectra of 1-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain, suggest that the [M? CH3]+ ion is represented partly by an α-hydroxybenzyl fragment. Moreover, the molecular ion loses successively—after scrambling of all hydrogen atoms, except those of CH3? a hydrogen atom and C6H6, generation the CH3CO+ ion. Diffuse peaks, found in the spectra of of 2-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain and in the phenyl ring, show that the molecular ion loses C2H4O, possibly via a four-center mechanism, after an exchange of aromatic and hydroxylic hydrogens. Mass spectra of 1-phenylpropanol-2 and its analogues, specifically, deuterated in the aliphatic chain, demonstrate that in the molecular ion exclusively the hydroxyl hydrogen atom is transferred to one of the ortho-positions of the phenyl ring via a McLafferty rearrangement, generating the [M ? C2H4O]+ ion. Furtherore, an eight-membered ring structure is proposed for the [M ? CH3]+ ion to explain the loss of H2O and C2H2O from this ion after an extensive scrambling of hydrogen atoms.  相似文献   

5.
The appearance potentials for the [R'CO2H2]+ ion produced in the fragmentation process \documentclass{article}\pagestyle{empty}\begin{document}$ \left[{{\rm R}^{\rm '} {\rm CO}_{\rm 2} {\rm R}} \right]_{}^{_.^ + } $\end{document} → [R'CO2H2]++[R? 2H] have been measured using mono-energetic electron impact techniques for ethyl, n-propyl, and i-propyl formates and acetates. The results indicate that at the threshold the product ion has the protonated acid structure with the hydrogen on the carbonyl and not the hydroxyl group, and that the neutral product for the propyl esters is the allyl radical and not the cyclopropyl radical. For the propyl formates and acetates the appearance potential of the [R'CO2H2]+ ion is identical with the adiabatic ionization potential of the parent ester (measured by photoelectron spectroscopy) indicating that fragmentation occurs for ground state molecular ions. A two-step mechanism is proposed to rationalize the results.  相似文献   

6.
Unimolecular decompositions of 2-methyl-1-hexene and several labelled analogues were studied following 70 eV electron impact (normal and metastable spectra) and field ionization (field ionization kinetic measurements). Molecules labelled with 13C in the 1-position and the methyl position were found to behave essentially identically. This is attributed to rapid transfer of a hydrogen atom mainly from C-5 to C-1 (γ-hydrogen shift). Loss of ethene, propene or propenyl do not involve loss of the methyl carbon or C-1. All three reactions are better than 90% specific in this respect under all conditions studied. At shorter times, C3H6 loss is the dominant reaction, while at longer times C2H6 loss accounts for >90% of the ion current. It is proposed that at least two distinct pathways for C2H4 loss operate in linear 1-alkenes, one of which (loss of carbons 1 and 2) is blocked by a 2-methyl substituent. The [C6H11] and [C5H10] ions formed from 13C labelled 2-methyl-1-hexenes fragment in an essentially statistical fashion.  相似文献   

7.
Photoion-photoion coincidence spectra of benzene and benzene-d6 photoionized by He(II) light and synchrotron radiation show the existence of six major and eight minor charge-separation reactions of the [C6H6]2+ ion. Three main groups of ion pairs are related to [C3H3]+ + [C3H3]+, [C2H3]+ + [C4H3]+ and [CH3]+ + [C5H3]+, with appearance energies of 32.2 ± 0.5 eV, 31.3 ± 0.5 eV and 28.4 ± 0.3 eV. The kinetic energy release is the same for all pairs within a group, irrespective of hydrogen number, but differs from group to group. Results are interpreted in terms of fast, direct charge separation of [C6H6]2+, and subsequent hydrogen loss by the singly charged fragments.  相似文献   

8.
The decomposition reactions of [C2H5O]+ ions produced by dissociative electron-impact ionization of 2-propanol have been studied, using 13C and deuterium labeling coupled with metastable intensity studies. In addition, the fragmentation reactions following protonation of appropriately labeled acetaldehydes and ethylene oxides with [H3]+ or [D3]+ have been investigated. In both studies particular attention has been paid to the reactions leading to [CHO]+, [C2H3]+ and [H3O]+. In both the electron-impact-induced reactions and the chemical ionization systems the fragmentation of [C2H5O]+ to both [H3O]+ and [C2H3]+ proceeds by a single mechanism. For each case the reaction involves a mechanism in which the hydrogen originally bonded to oxygen is retained in the oxygen containing fragment while the four hydrogens originally bonded to carbon become indistinguishable. The fragmentation of [C2H5O]+ to produce [CHO]+ proceeds by a number of mechanisms. The lowest energy route involves complete retention of the α carbon and hydrogen while a higher energy route proceeds by a mechanism in which the carbons and the attached hydrogens become indistinguishable. A third distinct mechanism, observed in the electron-impact spectra only, proceeds with retention of the hydroxylic hydrogen in the product ion. Detailed fragmentation mechanisms are proposed to explain the results. It is suggested that the [C2H5O]+ ions formed by protonation of acetaldehyde or ionization of 2-propanol are produced initially with the structure [CH3CH?\documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H] (a), but isomerize to [CH2?CH? \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^ + $\end{document}H2] (e) prior to decomposition to [C2H3]+ or [H3O]+. The results indicate that the isomerization ae does not proceed directly, possibly because it is symmetry forbidden, but by two consecutive [1,2] hydrogen shifts. A more general study of the electron-impact mass spectrum of 2-propanol has been made and the fragmentation reactions proceeding from the molecular ion have been identified.  相似文献   

9.
Composite metastable peaks are generated in the unimolecular fragmentations (i) [C3H5]+ → [C3H3]+ + H2 (flat-top upon flat-top) and (ii) [C4H9]+ → [C3H5]+ + CH4 (flat-top and gaussian). The measurement of appearance potentials and kinetic energy releases lead us to conclude, in agreement with earlier proposals, that in (i) the components can arise from the generation of the isomeric cyclopropenium and propargyl daughter cations. In (ii) the components are proposed to arise from the fragmentation of tert- and sec-butyl cations yielding allyl as the common daughter ion. The composite peak observed in the fragmentation (iii) [C3H4]+· → [C3H3]+ + H· is shown to be present only if the decomposing molecular ion is large enough to also produce [C6H8]2+ ions. The second component in (iii) then arises from the reaction [C6H8]2+ → [C6H6]2+ + H2.  相似文献   

10.
The mass spectra of 1,3-dithiane, 2-methyl- and 2,2-dimethyl-1,3-dithiane have been studied by 2H labelling and metastable defocusing. The various molecular ions eliminate S2H. to produce the ions [C4H7]+, [C5H9]+ and [C6H11]+ respectively, each of which scramble the hydrogens either before or accompanying further decomposition. Other processes are complex, but parallel those already reported for 2-aryl-1,3-dithianes.  相似文献   

11.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

12.
For two competing decompositions of the same molecular ion to give products [A1+] and [A2+], the ratio [A1+]/[A2+], is equal to the ratio of rate constants for the formation of the stable ions. Thr ratios, [Y C7H4O+]/[C7H5O+], were determined for several benzophenones for electron energies from 15 to 70 eV. Plots of log [Y C7H4O+]/[C7H5O+] vs.[ω+] gave good straight lines at all energies. Similar correlations have been reported for log [Y C7H6+]/[C7H7+] from substituted diphenyl ethanes and are also true for substituted acetophenones, log [YøCO+]/[CH3CO+]. A few charge exchange data were obtained which showed the same general trend as the electron-impact data and emphasize the contribution of low energy ions in the 70 eV mass spectra. Relatively poor correlations were obtained for the [Y C6H4+] and [C6H5+] ions that are formed by both one-step and two-step decompositions.  相似文献   

13.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

14.
For compounds C6H5X (X?Cl, Br, I) under chemical ionization conditions, methylamine causes ipso substitution of X by [NH2CH3]+ and by [NH2]+˙. C6H5F is less reactive; it gives some [C6H5NH2]+˙. Nitrobenzene gives an adduct ion [M+CH3NH3]+, a reduction product ion [C6H5NO2]+˙, and an ion at m/z93, probably a substitution product [C6H5NH2]+˙, but no [C6H5NH2CH3]+. It is also shown that the ion m/z94, formed from nitrobenzene with ammonia as reagent gas, is a substitution product rather than a reduction product ion. Carbonyl compounds C6H5. CO. X give adduct ions and some substitution, mainly [C6H5NH2]+˙.  相似文献   

15.
The ionization potentials for the stereoisomers of trans-fused 1,2-dimethyl- and 1-ethyl-2-methyl-4-R-decahydroquinol-4-ols (R?C?CH, CH?CH2 or C2H5) and the appearance potentials for the [M–CH3]+ and [M–C2H5]+ ions (loss of 2-CH3 and 4-C2H5 groups potential, respectively) were measured by using the electron impact method. The ionization and appearance potential for [M–CH3]+ are always lower for the isomers with the axial 2-CH3 group. For the C-2 epimers, the difference between the appearance potentials for the [M–CH3]+ ion values is likely to be equal to the enthalpy differences between the ground states of the epimers and the dissociation energy differences between the axial and equatorial C2–CH3 bonds. The appearance potentials for [M–C2H5]+ for the C-4 epimers possessing the 4-C2H5 group were very similar. At the same time, the appearance potentials for the [M–CH3]+ ions were lower for less stable epimers which had an axial 4-C2H5 group.  相似文献   

16.
The correlations between electron impact induced formation of fragment [M ? C6H6]+˙ from alkyl-substituted 2,2-diphenyl-1,3-dioxa-2-germacyclohexane (1) and the peculiarities of the molecular structures were found. Benzene elimination is regiospecific and stereoselective, resulting from the abstraction of an axial phenyl group and a hydrogen atom from the C-4 or C-6 position of the ring.  相似文献   

17.
Compounds C6H5X(X ? F, Cl, Br, NO2, CN, OCH3) have been studied under chemical ionization conditions with ammonia as reagent gas. A pulsed electron beam and time resolved ion collection has allowed the determination of the reaction leading to the formation of [C6H5NH3]+ (m/z 94). [NH4]+ reacts with C6H5X(X ? F, Cl, Br) to yield m/z 94 but C6H5X (X ? CN, NO2) forms this ion only by reactions involving either [NH3]+ or [C6H5X]+. C6H5OCH3 does not form m/z 94.  相似文献   

18.
Metastable ion peak shapes, dimensions and relative abundances have been measured for the three fragmentations [C3H6]+· → [C3H4]+· + H2, [C3H6]+· → [C3H5]+ + H· and [C3H6]+· → [C3H3]+ + H2 + H·. [C3H6]+· ions were derived from propene, cyclopropane, tetrahydrofuran, cyclohexanone, 2-methyl but-1-ene and cis-pent-2-ene. Activation energies for these fragmentations have been evaluated. Three daughter ion dissociations ([C3H5]+ → [C3H3]+ + H2, [C3H5]+ → [C3H4]+· + H· and [C3H4]+· → [C3H3]+ + H·) have been similarly examined. Ion structures have been determined and the metastable energy releases have been correlated with the thermochemical data. It is concluded that the molecular ions of propene and cyclopropane become structurally indistinguishable prior to fragmentation and that differences in their metastable ion characteristics can be ascribed wholly to internal energy differences; the latter can be correlated with the photoelectron spectra of the isomers. The pathway for the consecutive fragmentation which generates the metastable ion peak (m/e 42 → m/e.39) has been shown to be It is likewise concluded that fragmentating [C3H6]+· ions generated from the various precursor molecules are also structurally indistinguishable and cannot be classified with either molecular ion of the isomeric C3H6 hydrocarbons.  相似文献   

19.
Salts containing the monoprotonated ethylene carbonate species of were obtained by reacting it with the superacidic systems XF/MF5 (X=H, D; M=Sb, As). The salts in terms of [C3H5O3]+[SbF6], [C3H5O3]+[AsF6] and [C3H4DO3]+[AsF6] were characterized by low-temperature infrared and Raman spectroscopy. In order to generate the diprotonated species of ethylene carbonate, an excess of Lewis acid was used. However, this only led to the formation of [C3H5O3]+[Sb2F11], which was characterized by a single-crystal X-ray structure analysis. Quantum chemical calculations on the B3LYP/aug-cc-PVTZ level of theory were carried out for the [C3H5O3]+ cation and the results were compared with the experimental data. A Natural Bond Orbital (NBO) analysis revealed sp2 hybridization of each atom belonging to the CO3 moiety, thus containing a remarkably delocalized 6π-electron system. The delocalization is confirmed by a 13C NMR-spectroscopic study of [C3H5O3]+[SbF6].  相似文献   

20.
The gas‐phase reactivity of [V2O5]+ and [Nb2O5]+ towards ethane has been investigated by means of mass spectrometry and density functional theory (DFT) calculations. The two metal oxides give rise to the formation of quite different reaction products; for example, the direct room‐temperature conversions C2H6→C2H5OH or C2H6→CH3CHO are brought about solely by [V2O5]+. In distinct contrast, for the couple [Nb2O5]+/C2H6, one observes only single and double hydrogen‐atom abstraction from the hydrocarbon. DFT calculations reveal that different modes of attack in the initial phase of C?H bond activation together with quite different bond‐dissociation energies of the M?O bonds cause the rather varying reactivities of [V2O5]+ and [Nb2O5]+ towards ethane. The gas‐phase generation of acetaldehyde from ethane by bare [V2O5]+ may provide mechanistic insight in the related vanadium‐catalyzed large‐scale process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号