首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The experimental results on homogeneous polymerization of acrylonitrile initiated with the sodium triethylthioisopropoxyaluminate, NaAlEt3S(i-Pr), catalyst in DMF at ?30°C. are compared with the prediction of equations based on a postulated mechanism. The agreement between the calculated and observed number-average molecular weight combined with the kinetic data and the relationship between the conversion and the initial catalyst concentration provides a rigorous test concerning the validity of the equations and the mechanism of the polymerization. A plausible mechanism is postulated as follows: The initiation must be relatively fast in accordance with the rate equations and the growing polymer undergoes propagation, transfer (to monomer), and deactivation simultaneously. The infrared spectrum of the low molecular weight polymer prepared at a high catalyst concentration showed strong absorption at 2337, 2205, and 1620 cm.?1 but no absorption at 900 cm.?1, indicating that there are two nitriles in the polymer, one of which is conjugated. The possibility of having ? CH?CH2 groups in the polymer is ruled out by the absence of the band at 900 cm.?1. In view of these facts, it is concluded that the polymer has a ? CH?CHCN endgroup resulting from the transfer reaction.  相似文献   

2.
The quenching of polymerization with a chromium oxide catalyst by radioactive methanol 14CH3OH enables one to determine the concentration of propagation centers and then to calculate the rate constant of the propagation. The dependence of the concentration of propagation centers and the polymerization rate on reaction time, ethylene concentration, and temperature was investigated. The change of the concentration of propagation centers with the duration of polymerization was found to be responsible for the time dependence of the overall polymerization rate. The propagation reaction is of first order on ethylene concentration in the pressure range 2–25 kg/cm2. For catalysts of different composition, the temperature dependence of the overall polymerization rate and the propagation rate constant were determined, and the overall activation energy Eov and activation energy of the propagation state Ep were calculated. The difference between Eov and Ep is due to the change of the number of propagation centers with temperature. The variation of catalyst composition and preliminary reduction of the catalyst influence the shape of the temperature dependence of the propagation center concentration and change Eov.  相似文献   

3.
The kinetics of the initiation and propagation of the ring‐opening metathesis polymerization of exo,exo‐5,6‐bis(methoxycarbonyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene catalyzed by Grubbs' catalyst (Cl2(PCy3)2Ru?CHPh) were measured by ultraviolet–visible and 1H NMR spectroscopy, respectively. Activation parameters for these processes were also determined. Although the ratio of the rate constant of initiation to the rate constant of propagation was determined to be less than 1 for this system, this polymerization showed many of the characteristics of a living system, including low polydispersities. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2125–2131, 2003  相似文献   

4.
Kinetic studies on methyl methacrylate polymerization were carried out with watersoluble 2,2′-azobisisobutyramidine (ABA). The rate of polymerization was proportional to the square root of the initiator concentration in the solvents chloroform, methanol, and dimethyl sulfoxide (DMSO), which confirms the bimolecular nature of the termination reaction. The monomer exponent was unity in chloroform but in methanol and DMSO the rate of polymerization passed through a maximum when plotted against the monmer concentration. This behavior in methanol has been attributed to be due to the enhanced rate of production of radical with increasing proportion of methanol. The rate of decomposition of the ABA has been observed to be faster in methanol than in chloroform. The situation becomes more complicated with DMSO, which was found to reduce the value of δ = (2kt)1/2/kp in methyl methacrylate polymerization. The rate of polymerization was observed to be highly dependent on the nature of the solvent, the rate increasing with increased electrophilicity of the solvent. The dependence of Rp on the solvent has been explained in the light of the stabilization of the transition state due to increased solvation of the basic amidine group of the initiator with the increased electrophilicity of the solvent.  相似文献   

5.
Cationic polymerization of cyclopentadiene induced by titanium tetrachloride–trichloroacetic acid was investigated in a toluene solution at ?69 to ?77°C. All manipulations were handled under vacuum conditions. Time–conversion curves were determined accurately by following the exothermicity of the fast reaction in an adiabatic system. The polymerization kinetics were developed on the basis of a fast initiation reaction and a nonstationary-state concentration (diminishing concentration) of active species, and the propagation rate constant k2 was determined by substituting either an initial rate of polymerization or a final conversion for the kinetic equations. k2 for the present system was determined to be 350 l./mole-sec, which is larger than those so far reported for some vinyl monomers in cationic polymerization. The present method can be commonly applied to reactive monomers for the determination of k2. The nature of termination reaction is discussed in connection with the determination of k2.  相似文献   

6.
The polymerization of vinylpyridine initiated by cupric acetate has been studied. The rate of polymerization was greatly affected by the nature of the solvent. In general polar solvents increased the rate of polymerization. Polymerization was particularly rapid in water, acetone, and methanol. The initial rate of polymerization of 4-vinylpyridine (4-VP) in a methanol–pyridine mixture at 50°C. is Rp = 6.95 × 10?6[Cu11]1/2 [4-VP]2 l./mole-sec. The activation energy of initiation by cupric acetate is 5.4 ± 1.6 kcal./mole. Polymerization of 2-vinylpyridine and 2-methyl-5-vinylpyridine with the same initiator was much slower than that of 4-VP. Dependence of Rp on monomer structure and solvent is discussed. Kinetic and spectroscopic studies led to the conclusion that the polymerization of 4-VP is initiated by one electron transfer from the monomer to cupric acetate in a complex having the structure, (4-VP)2Cu(CH3COO)2.  相似文献   

7.
Homogeneous polymerization of propargyl alcohol (OHP) with Pd (C?CCH2OH)2(PPh3)2 [Pd?C] catalyst in CHCl3-CH3OH mixed solvent system has been investigated. [Pd?C] was found to be a novel effective catalyst for the OHP polymerization. Some features, kinetic behavior, and effect of solvent for the OHP polymerization are described and discussed. The overall polymerization activation energy was found to be 75.6kJ/mol and the rate equation can be expressed as Rp = kp[OHP] [Pd?C]0.7, where kp = 3.14 × 10-4 L0.7/ mol0.7 S (60°C). Polypropargyl alcohol (POHP) obtained is a brown powder with a number-average molecular weight (M?n) of 103-2 × 103, and soluble in MeOH, DMF, and DMSO. Conducting properties of the resulting POHP were investigated. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The polymerization of L - and DL -alanine NCA initiated with n-butylamine was carried out in acetonitrile which is a nonsolvent for polypeptide. The initiation reaction was completed within 60 min.; there was about 10% of conversion of monomer. The number-average degree of polymerization of the polymer obtained increased with the reaction period, and it was found to agree with value of W/I, where W is the weight of the monomer consumed by the polymerization and I is the weight of the initiator used. The initiation reaction of the polymerization was concluded as an attack of n-butylamine on the C5 carbonyl carbon of NCA. The initiation, was followed by a propagation reaction, in which there was attack by an amino endgroup of the polymer on the C5 carbonyl carbon of NCA. The rate of polymerization was observed by measuring the CO2 evolved, and the activation energy was estimated as follows: 6.66 kcal./mole above 30°C. and 1.83 kcal./mole below 30°C. for L -alanine NCA; 15.43 kcal./mole above 30°C., 2.77 kcal./mole below 30°C. for DL -alanine NCA. The activation entropy was about ?43 cal./mole-°K. above 30°C. and ?59 cal./mole-°K. below 30°C. for L -alanine NCA; it was about ?14 cal./mole-°K. above 30°C. and ?56 cal./mole-°K. below 30°C. for DL -alanine NCA. From the polymerization parameters, x-ray diffraction diagrams, infrared spectra, and solubility in water of the polymer, the poly-DL -alanine obtained here at a low temperature was assumed to have a block copolymer structure rather than being a random copolymer of D - and L -alanine.  相似文献   

9.
The initiation and propagation reaction in γ-ray-induced polymerization of ethylene was studied by the two-stage irradiation method, i.e., a first stage in which initiation and propagation occur at a high dose rate, and a second stage where only the growth of polymer radical occurs. The rate of initiation is calculated from the amount of polymerized monomer and the degree of polymerization as the rate of increase in the number of polymer chains. The initiation rate is shown to be proportional to the ethylene density in the reactor and dose rate. GR of radical formation is found to be about 1.6 at 30°C. at a dose rate of 2.5 × 104 rad/hr. and is almost independent of ethylene density but decreases slightly with increasing irradiation dose rate. The lifetime of the growing polymer chain radical is shown to be long at normal temperature. The absolute propagation rate is proportional to the square of ethylene fugacity and depends on dose rate to some extent. For chain growth, irradiation of low dose rate is necessary. The apparent activation energy for the propagation reaction is ?9 kcal./mole.  相似文献   

10.
The polymerization of isobutylene by 3-chloro-1-butene/trivinylaluminum (V3Al) and t-butyl chloride/V3Al initiator systems with methyl chloride and methylene chloride as solvents has been investigated in the range from ?30 to ?72?C. The rate of polymerization increases with decreasing temperatures from ?30 to ?50°C and then decreases when the temperature is further lowered, for example, to ?72°C. Mayo plots and a determination of the number of polymer molecules n? formed per molecule of initiator employed suggests a transfer-less, i.e., termination-dominated system. A critical analysis shows that for systems containing both free ions and ion pairs, the Mayo equation is meaningful only when the degree of dissociation α remains constant over the whole [M] range investigated. This condition is achieved in RCl/V3Al-initiated systems by using an initiator (t-BuCl) for which the rate of catalyst destruction is insignificant compared to rate of initiation, Ri, i.e., initiation efficiency, f ≈ 1 and Ri independent of [M]. Polyisobutylene, containing, 1.8 ± 0.1 terminal unsaturation, has been synthesized by the use of 3-chloro-1-butene initiator in conjunction with V3Al coinitiator, and avenues for further efficient synthesis of α,ω-diene-polyisobutylenes have been outlined.  相似文献   

11.
The rate of polymerization of t-BuEO by t-BuOK in DMSO is about one-tenth that of propylene oxide. The slow rate of propagation was accompanied by considerable chain transfer. In the absence of solvent, the polymer obtained was crystalline, different from the isotactic form and therefore must be syndiotactic. The NMR spectra indicate the isotactic polymer exists in solution preferentially in the skew1 form, while syndiotactic is about 60% skew1, 40% skew2. Amorphous polymer accompanying isotactic exists about 50% in the trans conformer, by NMR data.  相似文献   

12.
Kinetics of hexene‐1 polymerization was investigated using [(N,N′‐diisopropylbenzene)2,3‐(1,8‐napthly)‐1,4‐diazabutadiene]dibromonickel/methylaluminoxane catalyst. Experiments were performed at varying catalyst and monomer concentrations in the temperature range of ?10 to 35 °C. First order time‐conversion plot shows a downward curvature at temperatures of 20 °C and 35 °C indicating the presence of finite termination reactions. A nonlinear plot of degree of polymerization (Pn) with respect to conversion indicates occurrence of transfer reactions and slow initiation. The experimental molar masses are higher than predicted, which implies that a fraction of catalyst species could not be activated or is deactivated at the early stages of the reactions. The efficiency of the catalyst (Cateff) varies from 0.77 to 0.89. The observed polydispersity of the poly(hexene‐1) s is in the range of 1.18–1.48. The reaction order was found to be 1.11 with respect to catalyst. The Arrhenius plot obtained using the overall propagation rate constant, kp, at five different temperatures (?10, 0, 10, 20, and 35 °C) was found to be linear with an activation energy, Ea = 4.3 kcal/mol. Based on the results presented it is concluded that the polymerization of hexene‐1 under the above‐mentioned conditions shows significant deviation from ideal “living” behavior. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1093–1100, 2007  相似文献   

13.
Ruthenium trichloride (RuCl3 or RuIII) catalyzed polymerization of methylmethacrylate (MMA) initiated with n‐butylamine (BA) in the presence of carbon tetrachloride (CCl4) by a charge‐transfer mechanism has been investigated in a dimethylsulfoxide (DMSO) medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been obtained under the conditions [CCl4]/[BA] ? 1 and [CCl4]/[BA] ? 1. The kinetic data indicate the possible participation of the charge‐transfer complex formed between the amine–RuIII complex and CCl4 in the polymerization of MMA. In the absence of either CCl4 or BA, no polymerization of MMA is observed under the present experimental conditions. The rate of polymerization is inhibited by hydroquinone, suggesting a free‐radical initiation. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 70–77, 2011  相似文献   

14.
Phthalaldehyde was found to undergo cyclopolymerization with ease by several cationic catalysts and by γ-ray irradiation. The polymer was composed entirely of the dioxyphthalan unit, as confirmed by infrared spectroscopy and ready decomposition to monomer. The enhanced polymerizability of phthalaldehyde as compared with other aromatic aldehydes was explained in terms of the intermediate-type or, preferably, concerted propagation scheme. The conversion reached a saturation value of 87% in about 1 hr in methylene chloride at ?78°C, indicating an equilibrium polymerization. The ceiling temperature of the polymerization was ?43°C, as estimated from the relation between the saturation yield and polymerization temperature. The enthalpy and entropy of propagation were ?5.3 kcal/mole and ?23.0 eu, respectively. Since the molecular weight of the polymer was proportional to conversion, the propagating chain end was considered to be “living” in this system. The rate constant for propagation was calculated to be 0.18 1/mole-sec in methylene chloride at ?78°C with BF3OEt2 catalyst.  相似文献   

15.
This contribution describes the development and demonstration of the ambient‐temperature, high‐speed living polymerization of polar vinyl monomers (M) with a low silylium catalyst loading (≤ 0.05 mol % relative to M). The catalyst is generated in situ by protonation of a trialkylsilyl ketene acetal (RSKA) initiator (I) with a strong Brønsted acid. The living character of the polymerization system has been demonstrated by several key lines of evidence, including the observed linear growth of the chain length as a function of monomer conversion at a given [M]/[I] ratio, near‐precise polymer number‐average molecular weight (Mn, controlled by the [M]/[I] ratio) with narrow molecular weight distributions (MWD), absence of an induction period and chain‐termination reactions (as revealed by kinetics), readily achievable chain extension, and the successful synthesis of well‐defined block copolymers. Fundamental steps of activation, initiation, propagation, and catalyst “self‐repair” involved in this living polymerization system have been elucidated, chiefly featuring a propagation “catalysis” cycle consisting of a rate‐limiting C? C bond formation step and fast release of the silylium catalyst to the incoming monomer. Effects of acid activator, catalyst and monomer structure, and reaction temperature on polymerization characteristics have also been examined. Among the three strong acids incorporating a weakly coordinating borate or a chiral disulfonimide anion, the oxonium acid [H(Et2O)2]+[B(C6F5)4]? is the most effective activator, which spontaneously delivers the most active R3Si+, reaching a high catalyst turn‐over frequency (TOF) of 6.0×103 h?1 for methyl methacrylate polymerization by Me3Si+ or an exceptionally high TOF of 2.4×105 h?1 for n‐butyl acrylate polymerization by iBu3Si+, in addition to its high (>90 %) to quantitative efficiencies and a high degree of control over Mn and MWD (1.07–1.12). An intriguing catalyst “self‐repair” feature has also been demonstrated for the current living polymerization system.  相似文献   

16.
The kinetic feature of the anionic polymerization of N-PMI was investigated in THF. The polymerization system initiated with lithium tert-butoxide was revealed to be so-called “slow-initiation” system. The rate constant of the initiation reaction, ki, was obtained to be 4.2 × 10?3 (L mol?1 s?1) at ?72°C. The apparent rate constants of the propagation reaction, k, at ?72°C were individually obtained from each slope of the first-order plots in the later stages of the polymerizations for four different initiator concentrations. Each k is fairly close to that of initiation rate around 10?3. The propagation reaction was concluded to be dominated by ion-pair mechanism from the analysis of the kinetic data and the results of the addition effects of crown ether and common salt.  相似文献   

17.
It was reported that acrolein (AL) in tetrahydrofuran (THF) polymerizes at temperatures below 0°C in the presence of pyridine (Py) and water. To clarify this polymerization mechanism the polymerization of AL and methyl vinyl ketone (MVK) by an initiation system such as Py–water, triethylamine (Et3N)–water, or Py–phenol(Ph) was carried out. The polymerization rate (Rp) of MVK in the Et3N–water system was expressed by the same equation, Rp = k [Et3N] [H2O] [MVK]2, used for AL in the Py–water system. Meanwhile, β-hydroxypropionaldehyde, β-phenoxypropionaldehyde, γ-ketobutanol, and β-phenoxy-1-methylpropionketone were obtained as the initial addition products. The polymer of AL obtained was composed of polymer units of vinyl and aldehyde polymerization, but the structure of MVK polymer obtained by the Py–water system was composed of only vinyl polymerization units. The polymerization of MVK by the Py–Ph system did not occur, however. These results were discussed in terms of the initiation and propagation mechanisms.  相似文献   

18.
The kinetics of acetylene polymerization initiated by Ti(OBu)4/4AlEt3 catalyst was studied by radioquenching with C*O to count the number of active sites [C] and by CH3OT* to determine the total metal polymer bonds [MPB] and M?n of the polymer. The amount of quenching agent and time of reaction required and the kinetic isotope effect for CH3OT* were determined. The effects of Al/Ti ratio, catalyst aging, catalyst concentration, temperature, and monomer pressure on the polymerization were investigated. Detailed kinetic data on the variation of rate of polymerization, Rp, [C] [MPB], and M?n with time were obtained at 298 and 195°K. The results required the assumption that the catalytic species C, is initially active and within less than 30 min all are converted by bimolecular kinetics to a far less active species. Analysis of the data yielded rate constants of propagation and termination and their energies of activation. Estimates of chain transfer efficiency were obtained. The mechanisms for the propagation, termination, and transfer processes were discussed. By drawing on our earlier EPR results we propose probable structures for the catalytically active species.  相似文献   

19.
Starch–poly(ethylene oxide) graft polymers were prepared in DMSO at various monomer and starch alkoxide concentrations. Complimentary and varied information on the structure of the graft polymers was obtained from NMR and periodic acid oxidation of the polymers. From the NMR spectra of the graft polymers in pyridine containing a trace of HCl, which causes shifting of the resonance of the internal ? CH2O? protons from the terminal ? CH2OH protons, the polyethylene oxide content, the DP n of the grafted side chains, and the efficiency of the alkoxides were calculated. With increase of the alkoxide concentration there was a small decrease in ? DP n, and in the efficiency of the alkoxides in initiating graft polymerization. With increase of monomer concentration, there was only a small increase in ? DP n but a large increase in the efficiency, indicating the existence of transfer reactions between the growing anions and the free hydroxyl groups on the starch. The results of he periodic acid oxidation showed that with increase of alkoxide concentration there was no significant change in the per cent oxidation of the graft polymers, but with increase of monomer, there was an increase in the participation of the secondary hydroxyl groups in initiation. This supports the NMR evidence for the existence of transfer reactions leading to ? DP n values much lower than those calculated from [monomer]/[catalyst] ratios.  相似文献   

20.
用溴丙烯-高氯酸银或癸二酰氯-高氯酸银引发四氢呋喃在0℃进行本体聚合,测得总生长反应速度常数(k_p)分别为0.32×10~(-3)及0.38×10~(-3)升·克分子~(-1)·秒~(-1)。这样低的k_p值认为是由于ClO_4~-抗衡负离子具有强的亲核性所致。在溴丙烯-高氯酸银催化体系配此中加大银盐用量(到过量51%),引发诱导时间缩短,聚合速度加快,而k_p值的增大不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号