首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Fluorescence emission and excitation spectra of single MEH-PPV polymer molecules dispersed in thin PMMA films have been recorded at 1.2 and 20 K. We observe single as well as multichromophore emission in single chain emission spectra, whereby the relative fractions depend on the two different molecular weights (50 and 350 kDa) studied. The molecular weight also affects the distribution of peak emission maxima, which is monomodal (bimodal) for the low (high) molecular weight. The appearance of an additional "red" subpopulation for the high molecular weight sample is attributed to interactions of multiple chromophores from a sufficiently flexible single chain. The comparison of emission spectra appearing in the "blue" as well as "red" subpopulations suggests that these intrachain interactions rather lead to ground-state aggregates than excimers. Independent of the molecular weight, large variations in spectral shape and apparent line width in the emission spectra have been observed. Occasionally, we find very narrow purely electronic zero-phonon lines both in emission and in excitation spectra, with line widths down to the instrumental resolution. In accordance with earlier literature data it is argued that linear electron-phonon coupling should be quite strong for MEH-PPV in PMMA, leading to only a small fraction of chromophores exhibiting zero-phonon lines. In addition, spectral diffusion, which manifests itself by several time-dependent line shifting and broadening phenomena, contributes to the substantial variations of spectral shapes. Excitation experiments with particularly stable chromophores provide an upper limit for the optical line width (approximately 0.1 cm(-1)), which at 1.2 K can actually approach the lifetime-limited homogeneous width. Raising the temperature to 20 K leads to line broadening and typically, to disappearance of zero-phonon lines. The failure to observe zero-phonon lines of chromophores supposedly serving as donors in intramolecular energy transfer is tentatively attributed to fast transfer rates, resulting in strongly broadened lines which escape detection even at 1.2 K.  相似文献   

2.
Spin-coated poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) films of different molecular weights (Mn= 9-255 kg/mol), both in the pristine and annealed state, were studied in an effort to elucidate changes in the polymer packing structure and the effects this structure has on the optoelectronic and charge transport properties of these films. A model based on quantum chemical calculations, wide-angle X-ray scattering, atomic force microscopy, Raman spectroscopy, photoluminescence, and electron mobility measurements was developed to describe the restructuring of the polymer film as a function of polymer chain length and annealing. In pristine high molecular weight films, the polymer chains exhibit a significant torsion angle between the F8 and BT units, and the BT units in neighboring chains are close to one another. Annealing films to sufficiently high transition temperatures allows the polymers to adopt a lower energy configuration in which the BT units in one polymer chain are adjacent to F8 units in a neighboring chain ("alternating structure"), and the torsion angle between F8 and BT units is reduced. This restructuring, dictated by the strong dipole on the BT unit, subsequently affects the efficiencies of interchain electron transfer and exciton migration. Films exhibiting the alternating structure show significantly lower electron mobilities than those of the pristine high molecular weight films, due to a decrease in the efficiency of interchain electron transport in this structure. In addition, interchain exciton migration to low energy weakly emissive states is also reduced for these alternating structure films, as observed in their photoluminescence spectra and efficiencies.  相似文献   

3.
Grazing angle photoluminescence (GPL) originates from a waveguided light emitted at grazing angle to the substrate due to the total internal reflections, and the light emission is polarized with enhanced intensity at selective mode wavelength. GPL measurements reveal the optical anisotropy of luminescent conjugated polymers, in particular, the alignment of emitting dipoles from which emission occurs, in contrast to spectroscopic ellipsometry measurements that give the anisotropy in the absorption. Based on the GPL emission intensities and spectra, we investigate the anisotropic optical properties in electroluminescent poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) conjugated polymer thin films of different molecular weights (M(n) = 9-255 kg/mol), both in the pristine and annealed states. The optical anisotropy in F8BT films generally increases with molecular weight, suggesting that higher molecular weight polymers with longer chains are more likely to lie in-plane to the substrate. Upon annealing, high molecular weight F8BT films show even a higher degree of anisotropy, in contrast to low molecular weight F8BT films that become more isotropic. Annealing causes the polymer chains to rearrange and adopt a configuration in which the interchain exciton migration to better ordered low energy (LE) emissive states is strongly suppressed. We observe that the emissive states in F8BT are strongly affected by the local polymer chain arrangement, producing the less ordered high energy (HE) emissive states near the substrate interface where there is a higher degree of chain disorder and the LE states in the bulk of the film. When spin coated onto a quartz substrate precoated with a poly(styrenesulfonate)-doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) layer, films of F8BT show severe luminescence quenching near the PEDOT:PSS interface for both the LE and HE emissive states, but a selective quenching of the LE states in the bulk of the film. These observations have important implications for fabricating efficient electronic devices using conjugated polymers as an active material, since the performance of these devices will strongly depend on anisotropic optical properties of electroluminescent conjugated polymers.  相似文献   

4.
An unprecedented short Pt...Pt contact between sterically bulky Pt((t)Bu(3)trpy) alkynyl moieties has been observed in the X-ray crystal structure of a dinuclear platinum(ii) complex bridged by a diethynylcalix[4]arene derivative; the complex in its crystalline state showed a red shift in the emission maxima at 298 K and 77 K relative to its powder form, which has been attributed to the presence of a metal-metal interaction in the crystal lattice.  相似文献   

5.
聚合物碳纳米点是近年来新兴的一种荧光纳米探针,具有较低的生物毒性、良好的水溶性、较高的量子产率、优异的光/化学稳定性以及良好的生物相容性.目前所制备的碳点大都表现出蓝、绿色荧光发射.为实现碳点长波荧光发射,扩大其在生物标记与成像及光电显示方面的应用,本文采用水相一步法交联聚合反应制备了具有橙红荧光发射性质且具有双光子效应的聚合物碳点,发射波长为604 nm,荧光量子产率达到30.64%,并且应用在生物活体成像中.  相似文献   

6.
We report detailed studies of optoelectronic and charge transport properties at the organic-organic semiconductor interfaces formed between polymer chains (interchain) and within a polymer chain (intrachain). These interfaces are fabricated using poly(9,9-di-n-octylfluorene-alt-N-(4-butylphenyl)diphenylamine) (TFB [f8-tfb]) (electron-donor) and poly(9,9-di-n-octylfluorene-alt-benzothiadiazole) (F8BT [f8-bt]) (electron-acceptor) conjugated polymers, by blending them together or by covalently attaching them via a main polymer backbone (copolymer). For optoelectronic properties, when a bulky and twisted tfb molecule is incorporated into a rigid F8BT conjugated backbone, it disturbs the conjugation of F8BT polymer, leading to a blue-shift in the lowest absorption transition. However, by acting as an effective electron donor, it assists the formation of an intrachain singlet exciton that has a strong charge-transfer character, leading to a red-shifted and longer-lived emission than that of F8BT. An extremely efficient and fast energy transfer from tfb donor to bt acceptor is observed in the copolymer (<1 ps) compared to transfer from TFB to F8BT in the blend (tens of ps). This efficient energy transfer in the copolymer is found to be associated with its low fluorescence efficiency (40-45% vs 60-65% for blend) because of the migration of radiative singlet excitons to low-energy states such as triplet and exciplex states that are nonemissive or weakly emissive. The presence of molecular-scale tfb-f8-bt interfaces in the copolymer, however, does not hinder an efficient transport of charge carriers at high drive voltages. Instead, it provides a better balance of charge carriers inside the device, which leads to slower decay of the device efficiency and thus more stable light-emitting diodes with increasing voltage than the blend devices. These distinctive optoelectronic and charge transport properties observed at different organic-organic semiconductor interfaces will provide useful input for the design rules of conjugated polymers required for improved molecular electronics.  相似文献   

7.
An indenofluorene‐based copolymer containing blue‐, green‐, and red light‐emitting moieties was synthesized by Suzuki polymerization and examined for application in white organic light‐emitting diodes (WOLEDs). Tetraoctylindenofluorene (IF), 2,1,3‐benzothiadiazole (BT), and 4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole (DBT) derivatives were used as the blue‐, green‐, and red‐light emitting structures, respectively. The number‐average molecular weight of the polymer was determined to be 25,900 g/mol with a polydispersity index of 2.02. The polymer was thermally stable (Td = ~398 °C) and quite soluble in common organic solvents, forming an optical‐quality film by spin casting. The EL characteristics were fine‐tuned from the single copolymer through incomplete fluorescence energy transfer by adjusting the composition of the red/green/blue units in the copolymer. The EL device using the indenofluorene‐based copolymer containing 0.01 mol % BT and 0.02 mol % DBT units ( PIF‐BT01‐DBT02 ) showed a maximum brightness of 4088 cd/m2 at 8 V and a maximum current efficiency of 0.36 cd/A with Commission Internationale de L'Eclairage (CIE) coordinates of (0.34, 0.32). The EL emission of PIF‐BT01‐DBT02 was stable with respect to changes in voltage. The color emitted was dependent on the thickness of the active polymer layer; layer (~60 nm) too thin was unsuitable for realizing WOLED via energy transfer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3467–3479, 2009  相似文献   

8.
A cerium(III) thiocyanate complex shows bright-blue emission at approximately 450 nm in acetonitrile, the quantum yield of which reaches more than 40 % at 298 K. Non-coordinating solvents such as acetonitrile give blue emission whereas oxygen-coordinating and nitrogen-coordinating solvents afford near UV and green emissions, respectively.  相似文献   

9.
Extensive new single molecule spectroscopy (SMS) data on the conjugated polymer MEH-PPV at low temperature were obtained. In particular, the combined effects of sample preparation and excitation condition were explored in detail. The data confirm previous observations from this laboratory that (i) the distribution of emission maxima of single MEH-PPV molecules has a bimodal distribution and (ii) the single molecule emission spectrum of MEH-PPV exhibits few time-dependent fluctuations of the emission intensity, band shape, or spectral maxima. These data also help explain the discrepancy among the various published SMS data on this compound and suggest that environmental impurities, long irradiation times, nearby interfaces, and incomplete data sampling may account for some of the discrepancies among the published data.  相似文献   

10.
We calculate the electronic states of the low bandgap polyfluorene-based copolymer DiO-PFDTBT, which consists of alternating 9,9-dioctyl-9H-fluorene and 4,7-di-thiophen-2-ylbenzo[1,2,5]thiadiazole (TBT) units, and compare with the steady-state absorption, emission, and excitation spectrum. Using the semiempirical quantum-chemical (ZINDO) method we can assign the characteristic bands of the "camel-back" absorption spectrum to one charge transfer state at lower energy localized on the TBT unit, and one delocalized excitonic state at higher energy corresponding to the pi-conjugated electron system. Additional "dark" charge transfer states in the gap between these bands have been revealed. Calculations are also made on the red light emitting polyfluorene-based copolymer poly(fluorene-co-benzothiadiazole) (F8BT), which contains benzo[1,2,5]thiadiazole instead of TBT. The nature of the electronic states in F8BT and DiO-PFDTBT are found to be qualitatively the same.  相似文献   

11.
New measurements have been made of rate constants for electron attachment to c-C(4)F(8) (octafluorocyclobutane) and thermal electron detachment from the parent anion, c-C(4)F(8) (-), over the temperature range 298-400 K in 133 Pa of He gas in a flowing-afterglow Langmuir-probe apparatus. From these data the electron affinity for c-C(4)F(8) was determined, EA(c-C(4)F(8))=0.63+/-0.05 eV. The motivation was to resolve a discrepancy between our earlier EA estimate and a higher value (EA=1.05+/-0.10 eV) reported from a recent experiment of Hiraoka et al. [J. Chem. Phys. 116, 7574 (2002)]. The electron attachment rate constant is 9.3+/-3.0x10(-9) cm(3) s(-1) at 298 K. The electron detachment rate constant is negligible at room temperature but climbs to 1945+/-680 s(-1) at 400 K. G3(MP2) calculations were carried out for the neutral (D(2d), (1)A(1)) and anion (D(4h), (2)A(2u)) and yielded EA(c-C(4)F(8) (-))=0.595 eV. Bond energies were also calculated for loss of F from c-C(4)F(8) and loss of F or F(-) from c-C(4)F(8) (-). From these, dissociative electron attachment is found to be endothermic by at least 1.55 eV.  相似文献   

12.
烷基和烷氧基取代聚噻吩的合成、表征与光电性能   总被引:13,自引:0,他引:13  
Fe(Ⅲ )氧化催化法合成了 4种聚噻吩衍生物 ,3 十二烷基聚噻吩 (Pat12 ) ,3 辛氧基聚噻吩 (Paot8) ,3,4 二 (十二烷基 )聚噻吩 (Pat12 12 )和 3 (十二烷基 )噻吩 3 (辛氧基 )噻吩共聚物 (CoPt12 o8) .发现这些衍生物易溶于多种常用有机溶剂 .用GPC法测定了各聚合物分子量 ,用1 H NMR法表征了各聚合物化学结构 .对比研究了这些聚合物紫外 可见吸收性能 ,光致发光性能和能隙 .对其电致发光性能进行测定的结果 ,得到了Pat12 ,Pat12 12和Paot8的电致发光光谱 .发射峰分别为 6 70nm ,5 6 0nm和 6 4 0nm .发光颜色分别为红色 ,黄色和红橙色 .聚合物的光电性能与主链电子结构有密切关系 .探讨了取代基种类和数量对聚合物能带结构 ,光电性能的影响 .  相似文献   

13.
A novel one dimension(1D) cadmium coordination polymer {[Cd(mpda)3]·2(NO3)}n(1) was synthesized via refluxing a mixture of tetradentate Schiff base ligand N,N'-bis(2-pyridinylethylidene)phenylene-1,3-diamine(L) and Cd(NO3)2 in acetonitrile, whose structure was characterized by means of single crystal X-ray diffraction, FTIR spectroscopy, elemental analysis and proton nuclear magnetic resonance(1H NMR). Center metal Cd(II) ion is six-coordinated by six nitrogen atoms from six different m-phenylenediamine(mpda), giving rise to a [CdN6] octahe- dral coordination environment. The two adjacent cadmium centers are linked by three mpda molecules leading to the construction of 1D chain structure. The crystal structure is stabilized by N-H…O hydrogen bonds to form three-dimension supramolecule. Compound 1 exhibits intense yellow luminescence in solid state at 298 K(λem=554 nm), which shows a blue shift at 77 K(ca. 147 nm). Additionally, fluorescence characteristics of compound 1 were investigated in different solvents(polarity: DMSO〉CH3CN〉CH3OH〉CHC13〉toluene) at 298 and 77 K. The results show that the emission peak of compound 1 in solvent exhibits a slight bathochromic shift. However, the emission peaks of compound 1 in CH3OH and CHC13 are red shift compared with that in CH3CN. It is revealed that the lumi- nescence behavior of compound 1 depends on not only the polarity of solvent but also the hydrogen bonding proper- ties between solvent and solute. In addition, the emission peak of compound 1 in solution shows a red shift obviously at 77 K than that at 298 K(ca. 144-159 nm), with the fluorescence lifetime increased at 77 K. The lifetime in DMSO at 77 K(r=12.470μs) was the longest one. The quantum yield of compoud 1 increases with increasing the polarity of solvent within a range of 1.8%-8.3 %.  相似文献   

14.
Derivatives of 2,3-(1,4-dialkoxyaceno)norbornadiene underwent ring-opening metathesis polymerization (ROMP) upon the catalysis of a ruthenium complex to afford the corresponding polymers. The polymeric materials containing anthracene chromophores emit white electro-luminescence, which can be fabricated into light-emitting diodes (LED). The broad emission band is composed of a blue emission from anthracene and a red emission from aggregates. A single layer device, ITO/polymer/Ca/Al, can be turned on at 7V and exhibits maximum intensity 427 cd/m2 at 15 V. A double layer device, ITO/polymer/TPBI/Mg:Ag (TPBI = (2,2′,2"-(1,3,5-benzenetriyl)-tris(1-phenyl-1H-benzimidazole)) displayed blue light with turn-on voltage 6 V and maximal intensity 930 cd/m2 at 15 V.Derivatives of bisindolylmaleimide were found to form amorphous solid films which exhibit intensive red luminescence. The property of forming glasses can be ascribed to the nonplanar geometry of these molecules. LED devices were fabricated by a layer of pure dye sandwiched between two charge transporting films. The yellow emission spectrum of the devices utilizing Alq (tris(8-hydoxyquinolinato)aluminum) contains a green component from Alq. Pure red emissions can be achieved by replacing Alq with TPBI. Typical devices can be turned on at ~3 V with maximal intensity 2000 cd/m2. White color devices are under current investigation, in which the green Alq layer is replaced by its blue derivative (bis(2-methyl-8-hydoxyquinolinato)(phenolato)aluminum).  相似文献   

15.
《中国化学快报》2022,33(8):4116-4120
The paper describes a kind of truly full-color photoluminescence (PL) CDs. The CDs were prepared by using one-pot hydrothermally heating citric acid and formamide at 200 °C for 2 h. The CDs have three fluorescent centers at blue, green, and red light region. Their color was regulated through two means, including changing excitation wavelengths or CDs concentrations. The emission maxima changed from blue to red with the increase of excitation wavelengths or CDs concentrations. The full-color PL behavior of the CDs was inherited and conserved in the solid polymer matrix, giving multicolor CDs/polymer films and light emitting diodes (LEDs). White-light LED (WLED) with the CIE coordinate approaching to (0.31, 0.32) were also achieved.  相似文献   

16.
Novel deep‐red emissive poly(2,6‐BODIPY‐ethynylene)s bearing dodecyl side chains (polymers A , B , and C ) have been prepared by palladium‐catalyzed Sonogashira polymerization of 2,6‐diiodo‐functionalized BODIPY monomers with 2,6‐diethynyl‐functionalized BODIPY monomers. These polymers emit in the deep‐red region with emission maxima at up to 690 nm, and exhibit significant red shifts (up to 166 and 179 nm) of both absorption and emission maxima compared with their parent BODIPY dyes due to significant extension of π‐conjugation. These polymers possess good thermal stability with decomposition temperature between 270 and 360 °C. The polymers exhibit a little larger Stokes shifts and shorter lifetime than their corresponding BODIPY dyes. The solid state thin films of polymers A , B , and C emit in near‐infrared region between 723 and 743 nm, and show significantly red shifts (up to 57 nm) in absorption and emission maxima relative to their polymer solution. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5354–5366, 2009  相似文献   

17.
FTIR spectra (400–7500 cm−1) have been recorded for polycrystalline films and single crystals of the diacetylene 4BCMU in the monomer, blue and red polymer states, and of 3BCMU monomer. Particular attention was paid to the amide bands associated to the urethanes in the side groups, which form one-dimensional H-bond linear chains quite similar to those found in peptides and proteins. The positions and strengths of these absorptions are practically unchanged by polymerization or blue to red polymer color transition. This suggests that the H-bond linear chains are the main constitutive interactions in these crystals, and that the conjugated parts must and do “adapt” to the unchanged H-bond lines. No evidence of side group disordering was observed at the irreversible blue to red transition in poly-4BCMU crystal.  相似文献   

18.
Summary: A strategy to generate an efficient white‐light emission has been developed by mixing fluorescence and phosphorescence emission from a single polymer. Fluorene is used as the blue‐emissive component, benzothiadiazole (BT) and the iridium complex [(btp)2Ir(tmd)] are incorporated into a polyfluorene backbone, respectively, as green‐ and red‐emissive chromophores by Suzuki polycondensation. By changing the contents of BT and [(btp)2Ir(tmd)] in the polymer, the electroluminescence spectrum from a single polymer can be adjusted to achieve white‐light emission. A white polymeric light‐emitting diode (WPLED) with a structure of ITO/PEDOT:PSS/PVK/PFIrR1G03/CsF/Al shows a maximum external quantum efficiency of 3.7% and the maximum luminous efficiency of 3.9 cd · A−1 at the current density of 1.6 mA · cm−2 with the CIE coordinates of (0.33, 0.34). The maximum luminance of 4 180 cd · m−2 is achieved at the current density of 268 mA · cm−2 with the CIE coordinates of (0.31, 0.32). The white‐light emissions from such polymers are stable in the white‐light region at all applied voltages, and the electroluminescence efficiencies decline slightly with the increasing current density, thus indicating that the approach of incorporating singlet and triplet species into the polymer backbone is promising for WPLEDs.

Structure of PFIrR1G04 and the EL spectra of its devices under various voltages. Device structure: ITO/PEDOT:PSS/PVK/polymer/CsF/Al.  相似文献   


19.
A neutral polyfluorene derivative that contains 20 mol % 2,1,3‐benzothiadiazole (BT) is synthesized by Suzuki cross‐coupling polymerization. A cationic conjugated polymer A and an α‐mannose‐bearing polymer B are subsequently obtained through different post‐polymerization methods. As a result of the charged pendant groups or sugar‐bearing groups attached to the polymer side chains, both A and B show good water‐solubility. The titration of Concanavalin A (Con A) into polymer aqueous solution leads to different fluorescent responses for polymers A and B . Polymer A does not show any obvious fluorescence change upon interaction with Con A, whereas polymer B shows fluorescence increase in BT emission intensity when Con A is added. This is because of the specific interaction between α‐mannose and Con A, which induces polymer aggregation, and then facilitates energy transfer from the phenylene–fluorene segments to the BT units. A practical calibration curve ranging from 1 nM to 250 nM is obtained by correlating the changes in BT emission intensity with Con A concentration. The advantage of polymer B ‐based Con A macromolecular probe is that it shows signal increase upon Con A recognition, which is significantly different from other conjugated polymer‐based fluorescence quenching assays.  相似文献   

20.
《Chemical physics》1987,118(1):123-131
Photopolymerization of diacetylene monocarboxylic acid in Langmuir—Blodgett films was studied by UV photoelectron spectroscopy. Upon polymerization, the ionization threshold energy decreased by 1.6 eV from 6.7 (monomer) to 5.1 eV (polymer). No change of the threshold was found between the blue and red forms of the polymer. This suggests that the polymer chain is in the acetylenic form in both forms. The mechanism of spectra sensitization by dyes is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号