首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four novel organic–inorganic hybrid compounds [Cu5 I(4,4′-bpy)3(2,2′-bpy)4][BW12O40] · H2O (1), [Ni0.5(2,2′-bpy)1.25][Ni(2,2′-bpy)3][Ni(2,2′-bpy)2(H2O)(SiW11VIWVO40)] · 0.5H2O (2), [H2bpy]2[Zn(2,2′-bpy)3]2[Si2W18O62] · 1.5H2O (3) and [CuII(2,2′-bpy)2]2[SiW12O40] · 2H2O (4) (2,2′-bpy = 2,2′-bipyridine, 4,4′-bpy = 4,4′-bipyridine) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, electrochemical measurements and single-crystal X-ray diffraction. Compound (1) is a novel [BW12O40]5− polyoxoanion bisupported by copper(I) coordination cations with mixed 2,2′-bpy and 4,4′-bpy ligands. Compound (2) is constructed from the [SiW11VIWVO40]5− polyoxoanions supported by [Ni(2,2′–bpy)2]2+. Compound (3) is composed of a novel [Si2W18O62]8− cluster and [Zn(2,2′–bpy)3]2+ complexes, which held together into a three-dimensional (3D) supramolecular network through hydrogen-bonding interactions. Compound (4) shows a 2D layer framework constructed from a bisupporting Keggin polyoxoanion cluster and [Cu(2,2′–bpy)2]2+ coordination polymer fragments, resulting in 3D networks via supramolecular interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Reaction of 2-(phenylazo)pyridine (pap) with [Ru(PPh3)3X2] (X = Cl, Br) in dichloromethane solution affords [Ru(PPh3)2(pap)X2]. These diamagnetic complexes exhibit a weakdd transition and two intense MLCT transitions in the visible region. In dichloromethane solution they display a one-electron reduction of pap near − 0.90 V vs SCE and a reversible ruthenium(II)-ruthenium(III) oxidation near 0.70 V vs SCE. The [RuIII(PPh3)2(pap)Cl2]+ complex cation, generated by coulometric oxidation of [Ru(PPh3)2(pap)Cl2], shows two intense LMCT transitions in the visible region. It oxidizes N,N-dimethylaniline and [RuII(bpy)2Cl2] (bpy = 2,2′-bipyridine) to produce N,N,N′,N′-tetramethylbenzidine and [RuIII(bpy)2Cl2]+ respectively. Reaction of [Ru(PPh3)2(pap)X2] with Ag+ in ethanol produces [Ru(PPh3)2(pap)(EtOH)2]2+ which upon further reaction with L (L = pap, bpy, acetylacetonate ion(acac) and oxalate ion (ox2−)) gives complexes of type [Ru(PPh3)2(pap)(L)]n+ (n = 0, 1, 2). All these diamagnetic complexes show a weakdd transition and several intense MLCT transitions in the visible region. The ruthenium(II)-ruthenium(III) oxidation potential decreases in the order (of L): pap > bpy > acac > ox2−. Reductions of the coordinated pap and bpy are also observed.  相似文献   

3.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(bpy)2(dpta)]3+ and [Co(bpy)2(amtp)]3+ (bpy = 2,2′-bipyridine, dpta = dipyrido-[3,2-a;2′,3′-c]-thien-[3,4-c]azine, amtp = 3-amino-1,2,4-triazino[5,6-f]-1,10-phenanthroline) have been synthesized and characterized. The interaction of CoIII complexes with calf thymus DNA was investigated by spectroscopic and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, CoIII complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The mechanism studies reveal that hydroxyl radical (OH) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(bpy)2(dpta)]3+ and superoxide anion radical (O 2 •− ) acts as the key role in the cleavage reaction of plasmid DNA by [Co(bpy)2(amtp)]3+.  相似文献   

4.
Two mononuclear copper(II) complexes, [Cu(bpy)2(CH3OH)](pic)2 (1) and [Cu(Me2bpy)2(H2O)](pic)2 (2) (bpy = 2,2′-bipyridine; Me2bpy = 4,4′-dimethyl-2,2′-bipyridine; Hpic = 2,4,6-trinitrophenol), were synthesized and characterized by elemental analyses, conductivity measurements, IR, UV–Visible spectroscopy and single crystal X-ray analyses. Both complexes 1 and 2 are mononuclear compounds. The copper atom in complex 1 is in a distorted square pyramidal geometry with a CuN4O chromophore as revealed from the τ value (0.25), while the Cu(II) ion in complex 2 displays a distorted trigonal bipyramidal stereochemistry with τ = 0.72. Hydrogen bonding interactions and π–π stacking interactions link the mononuclear copper complex 1 or 2 into a 1D infinite chain. The interactions of the two mononuclear complexes with herring sperm DNA (HS-DNA) have been studied by UV–visible absorption titration, fluorescence titration and ethidium bromide (EB) displacement experiments. The results suggest that both complexes might bind to DNA by intercalation.  相似文献   

5.
Two new neodymium complexes, [Nd2(abglyH)6(2,2′-bipy)2(H2O)2] · 4H2O 1 and {[Nd(abglyH)3(H2O)2] · (4,4′-bipy) · 7H2O}n 2 (abglyH2 = N-P-acetamidobenzenesulfonyl-glycine acid, 2,2′-bipy = 2,2′-bipyridine, 4,4′-bipy = 4,4′-bipyridine), have been synthesized and their structures have been measured by X-ray crystallography. In 1, nine-coordinated Nd(III) ions are bridged by two synsyn bidentate and two tridentate bridging carboxylate groups from four different abglyH anions to form dinuclear motifs, which are further connected into a 3-D supramolecular framework via hydrogen bonds between the binuclear motifs and the uncoordinated water molecules. In 2, eight-coordinated Nd(III) ions are linked by six carboxylate groups adopting a synsyn bidentate bridging fashion to form a 1-D inorganic–organic alternating linear chain. These polymeric chains generate microchannels extending along the a direction, and these cavities are occupied by discrete tetradecameric water clusters, which interact with their surroundings and finally furnish the 3-D supramolecular network via hydrogen bonds. At the same time, π–π stacking interactions between benzene rings from abglyH anions also play an important role in stabilizing the network.  相似文献   

6.
Six new μ-terephthalato iron(III) binuclear complexes have been prepared and identified: [Fe2(TPHA)(L)4]-(ClO4)4 [L = 2,2′-bipyridine (bpy); 1,10-phenanthroline (phen); 4,4′-dimethyl-2,2′-bipyridine (Me2bpy); 5-methyl-1,10-phenanthroline (Me-phen); 5-chloro-1,10-phenanthroline (Cl-phen) and 5-nitro-1,10-phenanthroline (NO2-phen)]; where TPHA = the terephthalate dianion. Based on the elemental analyses, molar conductance and magnetic moments of room-temperature measurements, and spectroscopic studies, extended TPHA-bridged structures consisting of two iron(III) ions, each in an octahedral environment, are proposed for these complexes. The [Fe2(TPHA)(Me-phen)4](ClO4)4 (1) and [Fe2(TPHA)(phen)4](ClO4)4 (2) complexes were characterized by variable temperature magnetic susceptibility (4–300 K) measurements and the observed data were successfully simulated by the equation based on the spin Hamiltonian operator, Ĥ = −2 1 Ŝ 2, giving the exchange integrals J = −1.05 cm−1 for (1) and J = −9.28 cm−1 for (2). This result indicates the presence of a weak antiferromagnetic spin-exchange interaction between the metal ions within each molecule. The influence of the terminal ligand methyl substituents on magnetic interactions between the metals is also discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Homoleptic 2,2′-bipyridyl complexes of lanthanides (Ln), Ln(bpy)4, were prepared by the reactions of iodides LnI2(THF)2 (Ln=Sm, Eu, Tm, or Yb), LnI3(THF)3 (Ln=La, Ce, Pr, Nd, Gd, or Tb), or bis(trimethylsilyl)amides Ln[N(SiMe3)2]3 (Ln=Dy, Ho, Er, or Lu) with bipyridyllithium in tetrahydrofuran (THF) or 1,2-dimethoxyethane in the presence of free 2,2′-bipyridine. The IR and ESR spectral data, the magnetic susceptibilities, and the results of X-ray diffraction analysis indicate that the complexes of all elements of the lanthanide series, except for the europium complex, contain Ln+3 cations and anionic bpy ligands. According to the X-ray diffraction data, the coordination polyhedra about the Sm and Eu atoms are cubes, whereas the environment about the Yb atom is a distorted dodecahedron. In the ionic complex [Lu(bpy)4][Li(THF)4], the geometry of the [Lu(bpy)4] anion is similar to that of the Lu(bpy)4 complex. The possible modes of charge distributions over the ligands,viz., Ln(bpy2−)(bpy.−)(bpy0)2 and Ln(bpy.−)3(bpy0), are discussed. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1897–1904, November, 2000.  相似文献   

8.
Two hexa-coordinate copper(II) complexes formulated as [Cu(phen)(4-dmampy)2(ClO4)2] and [Cu(bpy)(3-ampy)2(ClO4)2] · 0.5CH3OH · 0.5H2O (phen = 1,10–phenanthroline bpy = 2,2′-bipyridine, 3-ampy = 3-aminopyridine, 4-dmampy = 4-dimethylaminopyridine), and one low-spin ferrous complex formulated as [Fe(dmbpy)3](ClO4)2 · H2O (dmbpy = 4,4′-dimethyl-2,2′-bipyridine), were synthesized by in situ ligand substitution at room temperature, and characterized by X-ray single-crystal diffraction. This is the first structural report where either 4-dmampy and phen molecules, or 3-ampy and bpy molecules, are located simultaneously around one metal center.  相似文献   

9.
The 1H NMR, electronic absorption, and luminescence spectra, as well as voltammograms of the reduction and oxidation of the complexes [Pd(C∧N)(N∧N)]ClO4 and [Pd(C∧N)(μ-OOCCH3)]2 [where (C∧N) is deprotonated 2-phenyl-4,5-dihydro-1,3-oxazole, and N∧N is ethylenediamine or 2,2′-bipyridine (bpy)] were compared. Magnetic nonequivalence of protons in the dihydrooxazole ring and upfield shift of the corresponding signals were observed as a result of anisotropic effect of the ring current in palladated phenyl substituents in the [Pd(C∧N)(μ-OOCCH3)]2 complex having a C 2 symmetry. One-electron reduction wave of [Pd(C∧N)bpy]+ was assigned to ligand-centered electron transfer to the π* orbital of 2,2′-bipyridine, and two oxidation waves of [Pd(C∧N)(μ-OOCCH3)]2 were attributed to successive one-electron oxidations of the palladium centers. Low-temperature (77 K) phosphorescence of [Pd(C∧N)En]+ and [Pd(C∧N)bpy]+ was ascribed to optical transition localized on the metal-complex fragment {Pd(C∧N)} and to interligand charge transfer between the chelating and cyclopalladated ligands. The formation of metal-metal bond in the complex [Pd(C∧N)(μ-OOCCH3)]2 gives rise to radiative decay of photoexcitation energy from two electronically excited states, one of which is localized on the {Pd(C∧N)} fragment, and the second corresponds to the charge transfer metal-metal-cyclopalladated ligand.  相似文献   

10.
Photochemical polymerization ofN,N′-methylenebisacrylamide (MBA) initiated by the dye-reducing agent rhodamine-B-allylthiourea (ATU) system is enhanced by the addition of small amounts oftris(2,2′-bipyridine)-ruthenium(II), Ru(bpy) 3 2+ , a result attributed to the efficient formation of chain-initiating allylthiourea radicals in the presence of Ru(bpy) 3 2+ ions. The rate of polymerization was found to be proportional to [Ru(bpy) 3 2+ ]0.5, [rhodamine-B]0.5, [ATU]0.5 and [MBA]1.0. A probable mechanism consistent with the observed results is proposed and discussed. TMC 2391  相似文献   

11.
    
Studies on the luminescence quenching of Ru(phen)32+ (phen = 1,10-phenanthroline) by the polymer-cobalt(III) complex ions, cis-[Co(phen)2(BPEI)Cl]2+ and cis-[Co(bpy)2(BPEI)Cl]2+ (bpy = 2,2′-bipyridine, BPEI = branched polyethyleneimine) in DNA as well as in various micellar media by steady-state emission spectroscopic technique have been reported. The quenching rate constants were arrived through Stern-Volmer equation. The results have been analysed based on hydrophobic as well as electrostatic binding between polymer-cobalt(III) complexes and DNA/micelles.  相似文献   

12.
The mononuclear Ru(III) complex, [Ru(bpy)(tppz)Cl][PF6]2.acetylacetone, where tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine and bpy is 2,2′-bipyridine, has been prepared and characterized by physicochemical and spectroscopic methods, cyclic voltammetry, and single crystal X-ray structure analysis. The coordination around the Ru(III) center is distorted octahedral, with bite angles of 80.70–161.83° for the chelating bpy and tppz ligands. The two pyridyl rings of the bpy ligand are nearly coplanar. UV–vis spectroelectrochemical studies of this complex in acetonitrile showed a reversible redox behavior evaluated by the maintenance of isosbestic points in the UV–vis spectrum for both forward reduction and reverse oxidation processes. Magnetic susceptibility data derived from paramagnetic NMR data revealed an effective magnetic moment of 1.79 BM at room temperature.  相似文献   

13.
From the reaction mixtures containing Cu(NO3)2, Na[N(CN)2], KPF6 and 2,2′-bipyridine (bpy) or 1,10- phenanthroline (phen) in 1:1:1:2 molar ratios, [Cu(bpy)2N(CN)2][Cu(bpy)2(H2O)](PF6)3 (1b) and [Cu (phen)2N(CN)2]PF6 (1p) complexes were isolated. Measured i.r. spectra confirm the presence of all functional groups in both complexes and, moreover, they indicate monodentate coordination of dicyanamide through the cyano nitrogen atom in (1p). The structure of (1b) contains two crystallographically independent complex cations. In both, Cu is coordinated by two chelating bpy molecules, and either dicyanamide anion or water molecule fills the fifth position, completing the basal plane. The CuII atoms in (1p) are coordinated by two chelating phen ligands and by one dicyanamide anion in the equatorial plane. Hexafluorophosphate anions in (1b) and (1p) remain uncoordinated. Besides the ionic forces in both structures, the structure of (1b) is stabilized by strong O—H···F and O—H···N hydrogen bonds and, moreover, both structures are stabilized by weak C—H···F hydrogen bonds and possible π-π interactions between pyridine rings of bpy or phen molecules.  相似文献   

14.
A classical ruthenium(II) complex [Ru(bpy)2(dppz)]2+ (bpy = 2,2′-bipyridine, dppz = dipyrido[3,2-a:2′,3′-c]phenazine) was combined with guanine and single-walled carbon nanotubes dispersed with DNA (SWCNTs-DNA) to prepare electrochemically tunable photoluminescence materials. These multi-component aggregates were found to show enhanced luminescence by the electrocatalytic oxidation of guanine under the excitation of a continuous wave green laser at a constant anodic potential via an electrode-solution interface. The results from this study provide a significant foundation for better understanding of DNA-based luminescent devices.  相似文献   

15.

Abstract  

Four complexes of 3,3-diphenylpropanoate (L) and 4,4′-bipyridine as auxiliary bridging ligands were synthesized and characterized, namely [Zn(L)2(4bpy)(EtOH)2] (1), [Co(L)2(4bpy)(EtOH)2] (2), [Ni(L)2(4bpy)(EtOH)2] (3), and [Cu(L)2(4bpy)(H2O)] (4) (4bpy = 4,4′-bipyridine). X-ray single-crystal diffraction analyses show that complexes 14 all take one-dimensional (1D) fishbone-like structures incorporating bridging 4bpy ligands. The complexes show different supramolecular frameworks interlinked via intermolecular hydrogen bonds, π···π stacking, and/or C–H···π supramolecular interactions. Complex 3 only has a simple one-dimensional fishbone-like chain, whereas complexes 1 and 2 show two-dimensional supramolecular structures by interchain C–H···O hydrogen bonds. Complex 4 is assembled into two-dimensional layers and then an overall three-dimensional framework by a combination of interchain O–H···O hydrogen bonds and C–H···π supramolecular interactions. The luminescent properties of the ligands and their complexes were investigated.  相似文献   

16.
Two new copper(II) complexes, [Cu(p-FBA)2(2,2′-bpy)]·(H2O) (1) and [Cu(p-FBA)(2,2′-bpy)2]·(p-FBA)2 (2) {p-FBA = p-fluorobenzoic acid, 2,2′-bpy = 2,2′-bipyridine} have been obtained from an identical starting mixture using temperature as the only independent variable and characterized by X-ray single crystal diffraction as well as with infrared spectroscopy, elemental analysis, and thermogravimetric analysis. The results reveal that 1 has 1D infinite chain structure formed by O–H···O hydrogen bonds, while 2 features a 0D structure. Additionally, there exist C–H···O hydrogen bonds and π–π stacking interactions in 1, forming 2D supramolecular structure. Furthermore, density functional theory (DFT) calculations of the structures, stabilities, orbital energies, composition characteristics of some frontier molecular orbitals and Mulliken charge distributions of the [Cu(p-FBA)2(2,2′-bpy)] of 1 and [Cu(p-FBA)(2,2′-bpy)2]+ cation of 2 were performed by means of Gaussian 03W package and taking B3LYP/lanl2dz basis set.  相似文献   

17.
Reaction of [Au(C6F5)(tht)2Cl](OTf) with RaaiR′ in CH2Cl2 medium leads to [Au(C6F5)(RaaiR′)Cl](OTf) [RaaiR′ = p-R–C6H4–N=N–C3H2–NN-1-R′, (1–3), abbreviated as N,N′-chelator, where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), Me (b), Cl (c) and R′ = Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The maximum molecular peak of [Au(C6F5)(MeaaiMe)Cl] is observed at m/z 599.51 (100 %) in the FAB mass spectrum. Ir spectra of the complexes show –C=N– and –N=N– stretching near at 1590 and 1370 cm−1 and near at 1510, 955, 800 cm−1 due to the presence of pentafluorophenyl ring. The 1H-NMR spectral measurements suggest methylene, –CH2–, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph shows AB type quartets. 13C-NMR spectrum of complexes confirm the molecular skeleton. In the 1H-1H-COSY spectrum as well as contour peaks in the 1H-13C HMQC spectrum for the present complexes, assign the solution structure and stereoretentive conformation. The electrochemistry gives the ligand reduction peaks.  相似文献   

18.
Two tetranuclear copper(II) complexes bridged by asymmetrical N,N′-bis(substituted)oxamides have been synthesized and characterized as [Cu4(dmapob)2(Me2bpy)2](pic)2·6H2O (1) and [Cu4(oxbe)2(dabt)2](pic)2 (2), where H3dmapob and H3oxbe denote N-benzoato-N′-[3-(dimethylamino)propyl]oxamido and N-benzoato-N′-(2-aminoethyl)oxamide, respectively; and Me2bpy, dabt, and pic represent 4,4′-dimethyl-2,2′-bipyridine 2,2′-diamino-4,4′-bithiazole, and 2,4,6-trinitrophenol, respectively. Complex 1 was characterized by elemental analyses, IR and electronic spectra, and single-crystal X-ray diffraction. Its structure consists of two asymmetrical binuclear copper(II) units linked by carboxyl bridges into a circular tetranuclear copper(II) complex with an embedded center of inversion. The copper(II) centers are in square-planar and distorted square-pyramidal environments. Hydrogen bonds and aromatic stacking interactions link the tetranuclear copper(II) fragments into a 3D supramolecular structure. The interactions of complexes 1 and 2 with herring sperm DNA (HS-DNA) were investigated by electronic and fluorescence spectra and viscosity measurements. Both complexes bind to HS-DNA via the intercalative mode, and complex 2 displays a significant binding propensity to HS-DNA.  相似文献   

19.
The reaction of the naphthalene complex of ytterbium, [Yb(DME)2]2(μ-C10H8), with 2,2′-bipyridine in 1,2-dimethoxyethane afforded the YbII complex containing the 2,2′-bipyridine radical anion. The resulting complex YbI(bipy)(DME)2 was characterized by IR and ESR spectroscopy, X-ray diffraction analysis, and magnetochemistry. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2341–2344, November, 1998.  相似文献   

20.
Three chromium(III) complexes with asparagine (Asn) and histidine (His) of the [Cr(ox)2(Aa)]2− type, where Aa = N,O–Asn, N,O–His or N,N′–His, were obtained and characterized in solution. The complexes with N,O–Aa undergo acid-catalysed aquation to give a free amino acid and cis-[Cr(ox)2(H2O)2], whereas the complex with N,N′–His undergoes parallel reaction paths: (1) isomerization to the N,O–His complex and (2) liberation of an oxalate ligand. Kinetics of the N,O–Aa complexes in HClO4 media were studied spectrophotometrically under pseudo-first-order conditions. The absorbance changes were attributed to the chelate ring opening at the Cr–N bond. The linear dependence of rate constants on [H+] was established, and a mechanism for the chelate ring cleavage was postulated. The existence of a metastable intermediate with O-monodentate Aa ligand was proved experimentally. Effect of [Cr(ox)2(Aa)]2− on 3T3 fibroblasts proliferation was studied. The tests revealed low cytotoxicity of the complexes. Complexes with Ala, His and Cys are good candidates for biochromium sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号