首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The active layer of the cathode of a fuel cell with polymer electrolyte (Nafion) is considered. The optimum carbon support structure is constructed using computer simulation: its carbon “skeleton” possesses the maximum outer surface area and provides electronic conductivity of the grains, support cubes, along the three coordinate axes. Nafion is absent in the support grain, so that the grain is capable of participating only in the transport of oxygen molecules, it possesses no proton conductivity. An estimate of all parameters of an optimum support grain is provided; in particular, the value of the effective Knudsen diffusion coefficient of oxygen is established. After this, effective proton conductivity and effective Knudsen diffusion coefficient are calculated already on the whole active layer scale, according to the model of equally sized cube grains of three types. In conclusion, the overall current in the active layer of a cathode with a polymer electrolyte was calculated for the percolation cluster consisting only of Nafion grains and the Knudsen diffusion of oxygen created only by a combined gas percolation cluster consisting of void grains and all support grains. The overall current value for t = 80°C and pressure of p* = 101 kPa proved to be low, hundreds of mA/cm2. The current value can apparently be increased to several A/cm2 if the support grains are developed that would simultaneously possess both proton conductivity and ability to sustain oxygen diffusion.  相似文献   

2.
The complete computer simulation of the cathodic active layer with solid polymer electrolyte (Nafion) is carried out. The active layer structure can be described by 8 parameters. In designing the optimal structure, it is shown that to provide the high overall characteristics of the cathode and save the catalyst, 0.5 of the active layer volume should be set aside for the support grains (agglomerates of carbon particles covered with platinum and containing Nafion incorporations and microvoids). Protons and oxygen molecules must be supplied to the active layer by means of peculiar combined percolation clusters. The latter consist of a combination of support grains with either Nafion grains (to produce “protonic” clusters) or grains-voids (to afford “gas” clusters). The volume fractions of Nafion grains and grain-voids are assumed to be 0.25 and 0.25. The computer simulation of the support grain structure is also carried out. Their composition, i.e., the volume fractions of the carbon component (g e), Nafion (g ii), and microvoids (g gg), is varied. The support grains play the key role in the active layer functioning. It is impossible to organize three full-value percolation clusters (electronic, protonic, and gas); hence, one has to have one or two combined clusters in the active layer. Thus the double load fells on the support grains. Their optimal structure should not only sustain the transport of protons and electrons in the active layer but also create the best conditions for the electrochemical process in each grain. The maximum current I max (realized upon reaching the optimal active layer thicknesses Δ*) is calculated. The dependences of I max and Δ* on the main parameters characterizing the support grains (g e and g ii) are analyzed. Here, two goals are sought: (1) to obtain the high currents, (2) to provide the low consumption of platinum per power unit. To solve the first problem, one has to work with high values of g e. The second problem requires the opposite: the values of g e must be minimal possible.  相似文献   

3.
The active layer of the cathode of a hydrogen–oxygen fuel cell with a solid polymer electrolyte is computer simulated. The active mass of the electrode consists of substrate grains (agglomerates of carbon particles with Pt particles embedded into them) and grains of a solid polymer electrolyte (Nafion). The substrate grains presumably contain hydrophobic pores, which facilitate the oxygen penetration into the active mass. A calculation of characteristics of such an electrode focuses on the optimization of platinum weights. The principal parameters of the system are concentration and size of grains of substrate and Nafion, Pt concentration in substrate grains, average diameter of hydrophobic pores in substrate grains, and the electrode polarization. The optimum, at a given electrode polarization, electrochemical activity of the active layer, its thickness, and the platinum weight are calculated. A link between these quantities and principal parameters of the active layer is revealed.  相似文献   

4.
A specific feature of the electrode active layer with polymer electrolyte consists in the fact that the current generation process can occur only on the condition of the direct contact of the catalyst support (carbon black) particles with Nafion. However, in reality, the support particle agglomerates (grains) contact the Nafion particle agglomerates (grains). Therefore, one must expect a low catalyst (platinum) utilization degree. A hypothesis is offered that a fractal film of Nafion is formed on the surface of the support grain pores in the case of manufacturing the “catalytic ink” used to form the active layer. It can significantly increase the platinum utilization degree. A detailed computer simulation of the process of Nafion penetration into the support grain pores is performed. Factors are established allowing reaching a high platinum utilization degree. The data of computer simulation agree with the experimental estimates of platinum utilization degree.  相似文献   

5.
A computer model of the active layer of the cathode of a hydrogen-oxygen fuel cell with a solid polymer electrolyte is studied. The active mass of the electrode consists of equidimensional grains of the substrate (agglomerates of carbon particles with platinum particles embedded in them) and a solid polymer electrolyte (Nafion). The flooding by water can be experienced by both the pores in the substrate grains, which facilitate the oxygen penetration into the active layer of the electrode, and the voids between the grains. All possible versions of the flooding of these pores by water are considered. A calculation of the optimum, at a given polarization of the electrode, value of electrochemical activity, the thickness of the active layer, and the weight of platinum is performed. The major parameters of the system are the concentrations of grains of the substrate and solid polymer electrolyte, the size of these grains, the platinum concentration in the substrate grains, the average diameter of pores in the substrate grains, and the polarization of electrodes. The ultimate aim of the work is to estimate how the flooding of pores of the active layer of the cathode by water affects the magnitude of the optimum current, the effective thickness of the active layer, and the weight of platinum.Translated from Elektrokhimiya, Vol. 41, No. 1, 2005, pp. 35–47.Original Russian Text Copyright © 2005 by Chirkov, Rostokin.  相似文献   

6.
A computer-aided simulation of the structure of the active layer of the cathode of a fuel cell with a solid polymer electrolyte (Nafion) is performed under the assumption about equidimensionalness of dimensions of grains of the substrate (with platinum crystallites in them) and grains (agglomerates of molecules) of Nafion. It is analyzed how the Nafion concentration affects principal parameters, which include the specific surface area, in the vicinity of which electrochemical process goes on; the effective ionic electroconductivity, and the effective diffusion coefficient of a gas. It is demonstrated how one can determine the Nafion concentration at which the overall current takes on a maximum value. Dependences of the optimum value of the overall current and the thickness of the active layer and the weight of platinum, which correspond to it, on the Nafion concentration are calculated. It is demonstrated that there in principle cannot exist one individual optimum concentration of Nafion, which is suitable for all techniques used for the preparation of the active layer. The mutual relationship between values of the effective diffusion coefficient of a gas and the effective ionic electroconductivity of Nafion determines the value of the optimum of the Nafion concentration.  相似文献   

7.
Full computer simulation of the active layer of a fuel cell cathode with polymer electrolyte and complete combined carbon support grains is carried out. The active layer structure included two types of equal-size cubic grains (combined support grains and voids) together forming a cubic lattice. Also, the structure of combined grains was modeled; a carbon cluster was formed in them, with the oxygen reduction process occurring on its surface; the rest of the grain volume was filled by polymer electrolyte. The completeness of the grains consisted in the fact that they were characterized by 3D electron conductivity, ability to take part in the transport of protons in the active layer and the carbon cluster in the grains had the maximum possible surface area. Calculation of overall currents of oxygen cathodes with full combined carbon support grains, Nafion, and platinum yielded the following result. At t = 80°C, pressure p* = 101 kPa, cathode potential E 0 = 0.8 V, and optimum active layer thickness Δ* = 20 μm, maximum overall current I max = 0.38 A/cm2, maximum power density W max = 0.31 W/cm2. At potential E 0 = 0.7 V, Δ* = 9.8 μm, I max = 1.13 A/cm2, W max = 0.79 W/cm2. At potential E 0 = 0.6 V, Δ* = 3.8 μm, I max = 2.95 A/cm2, W max = 1.76 W/cm2. At potential E 0 = 0.5 V, Δ* = 1.4 μm, I max = 7.71 A/cm2, W max = 3.86 W/cm2. The overall current values are higher than those observed experimentally at the given cathode potentials. The discrepancy is explained by the fact that calculations of active cathode layers with a practically regular structure were carried out. All combined support grains in them are full and identical, while in fact the active layer structure is not characterized by the properties of fullness and equivalence. The second circumstance is that experimental active layers rarely have a strictly optimum thickness. Meanwhile deviation from this optimum results in losses in current. Transition to cathodes with combined grains has additional advantages. (1) In such grains, all platinum participates in current generation, the catalyst utilization degree reaches 100%. (2) Oxygen can enter the active layer not through small Knudsen pores, but through large (with the diameter of hundreds and more nm) gas pores, in which usual molecular gas diffusion occurs, so that diffusion limitations in the active layer become less significant. 3. In the active layer, the danger of gas pore flooding by evolving water decreases. Now, water vapor is much more easily removed from large gas pores directing then into the gas-diffusion layer pores.  相似文献   

8.
A new type of the cathodic active layer structure for a polymer electrolyte fuel cell is proposed. This structure is based on combined grains and gas pores. Combined grains represent nonporous agglomerates of carbon black particles (catalyst carrier) and Nafion molecules. This type of cathodes has the following advantages: (1) in combined grains, complete utilization of the catalyst occurs, (2) limitations on the oxygen delivery into the active layer are almost totally lifted, and (3) the danger that pores will be flooded with evolved moisture is actually released. The overall characteristics of cathodes with combined grains are calculated. The advantages of such oxygen or air cathodes are demonstrated, namely, not only their enhanced power density but also the lower index of platinum consumption, i.e., the platinum amount per kW of electric energy produced in the membrane-electrode block, as compared with conventional cathodes.  相似文献   

9.
The work of the positive electrode (cathode) of a lithium-ion battery is simulated. The model of equally sized grains of three types: the intercalating agent grains with a volume fraction g, the electrolyte grains with a volume fraction g i, and the carbon black grains with a volume fraction g e is studied. The optimal composition of cathode active mass providing maximum specific capacity of cathode is determined. It is shown that a fraction of carbon black grains should be as small as possible: g e = 0.35. The variation in the fraction of intercalating agent grains within the allowable limits (0 ?? g ?? 0.3) changes the main parameters of cathode active mass: a fraction of electrochemically active intercalating agent grains g* (g* < g); a specific surface area S, on which the electrochemical process proceeds; and the conductivity k* by lithium ions in the ionic percolation cluster, which forms in the cathode active mass. The parameters g* and S decrease and parameter k* steeply increases with decreasing g. Therefore, in the range of possible values of g, specific capacity of cathode reaches the maximum value at g = g opt. The value of g opt is determined under the galvanostatic mode of cathode discharge. The cathode working parameters: the active layer thickness, discharge time, specific capacity, and potential at the cathode active layer/interelectrode space interface at the instant of discharge completion are calculated in relation to a fraction of intercalating agent grains g.  相似文献   

10.
The mechanism governing operation of hydrophobized cathodes is discussed. A model is proposed for the active-layer structure. The model consists of equidimensional hydrophobic (agglomerates of polytetrafluoroethylene particles) and hydrophilic (agglomerates of carbon black particles with the catalyst on them) grains. The percolation characteristics of the model are calculated: the presence of a gas cluster and an ionic cluster is established, the specific area of contact between these clusters is determined, the magnitude of ionic conductivity is assayed, and so forth. The “model of cylindrical gas pores” is selected for calculating the overall current. Formulas for the bulk current density are determined. The overall characteristics of a cathode with a platinum catalyst on a carbonaceous carrier (on carbon black) in 7 M KOH at a temperature of 60°C are calculated with allowance made for the fact that the Tafel plots for the process of reduction of oxygen on platinum have two segments with different slopes.  相似文献   

11.
It is shown that, for the electrodes of fuel cells with solid polymer electrolyte, the dependence of overall current on the active layer thickness contains an extremum. There is an optimum thickness of active layer, at which the overall current reaches its maximum possible value. The nature of this dependence is explained. The character of the distribution of electrochemical process intensity over the depth of active layer of cathode with solid polymer electrolyte is analyzed. The optimum thicknesses of active layers of oxygen and air cathodes of fuel cells with Nafion and platinum and the corresponding overall currents and contents of catalyst in the active layer are calculated. In the calculations, the temperature of fuel cell, the pressure in the cathode gas chamber, and the cathodic potential were varied. The optimization of active layer thickness of cathode with solid polymer electrolyte can reduce the platinum consumption, i.e. its amount per 1 kW of power produced in a membrane-electrode assembly.  相似文献   

12.
A large proportion of voltage losses in polymer electrolyte fuel cells (PEFCs) originates in cathode catalyst layers. Catalyst utilization and performance of conventional catalyst layers depend largely on their ionomer content and distribution. The present study explores effects of agglomerate size and ionomer distribution on reaction rate distributions and effectiveness factor of Pt utilization. To study the oxygen reduction reaction, we have developed an agglomerate model, which consists of coupled relations for proton and oxygen transport, metal charging behavior, and interfacial charge transfer kinetics. The model is considered under steady state conditions. Results show that higher effectiveness factor is attained for agglomerates with smaller size and larger oxygen partial pressure on the surface. In addition, low to medium coverage of the ionomer skin layer is beneficial in view of high effectiveness factors due to the optimized interplay of oxygen and proton supply.  相似文献   

13.
Total computer-aided simulation of the structure and current-generation processes in the cathodic active layer of a fuel cell with solid polymer electrolyte is carried out. Not only the transport structure of the active layer but also the structure of support grains (agglomerates of carbon particles with platinum-covered surface) are modeled. The process of active layer functioning under potentiostatic conditions is studied. It is demonstrated for the first time how the moisture exchange in the pores of support grains affects the cathode overall characteristics. The time variations of the overall current, the average temperature of the active layer, and the total degree of water-flooding of support-grain pores within the active layer are calculated by numerical methods. It is shown that for the fuel cell voltage of 0.6 V and its working temperature of 80°C, the flooding process dominates over the process of drying of pores in support grains. In 10–15 s, all support-grain pores turn out to be entirely filled with water. Then they begin functioning not in the kinetic mode (in the moment of switching-on the current, the Knudsen diffusion of oxygen in the support grains is observed) but in the inner-diffusion mode. As a result, the overall cathodic current decreases from its initial value of 4.323 A/cm2 to its final value of 0.526 A/cm2 and the active layer temperature decreases from the initial value of 102°C to the final value of 82.5°C. The overall current transient is studied also experimentally, the qualitative coincidence of theoretical and experimental data is demonstrated.  相似文献   

14.
Effect of the carbon material dispersivity on the efficiency of oxygen electroreduction by laccase immobilized on finely divided colloidal graphite (FCG) and carbon black AD-100 is studied. A highly active composite material based on FCG with laccase immobilized on it is proposed and investigated. This creates optimum conditions for direct bioelectrocatalysis by enzyme molecules. The specific oxygen reduction current calculated per enzyme molecule for nanocomposite FCG + laccase is five times that on an AD-100-based composite. Increasing the active-layer thickness, which is of importance for creating a gas-diffusion oxygen electrode, reduces specific activity of composite and only the activity of ultrathin layers is thickness-independent. This is explained by percolation restrictions on the electron transport, which reduce the number of catalytically active centers in the electrode's active layer that take part in reaction. The FCG particles are presumed to form agglomerates in the active layer. The size of the agglomerates is determined on the basis of computer-aided modeling of percolation processes and experimental data on the dependence of the specific capacitance of the active mass on the active-layer thickness. Hypotheses on the origin of percolation phenomena are put forth. One such hypothesis is that agglomerates of carbon particles are fractal clusters.  相似文献   

15.
A steady-state, one-dimensional numerical model based on cylindrical electrode structure is presented to analyze the performance of the ordered cathode catalyst layer in Proton Exchange Membrane Fuel Cells. The model equations account for the Tafel kinetics of oxygen reduction reaction, proton migration, oxygen diffusion in the cylindrical electrolyte and the gas pores, oxygen distribution at the gas/electrolyte interface. The simulation results reveal that ordered catalyst layers have better performance than conventional catalyst layers due to the improvements of mass transport and the uniformity of the electrochemical reaction rate across the whole width of the catalyst layer. The influences of oxygen diffusivity in gas phase and electrolyte, and the proton conductivity have been shown. The limitation by oxygen diffusion in gas phase drives the active region of the catalyst layer to the catalyst layer/gas diffuser interface. The limitation by proton migration confines the active region of the catalyst layer to the membrane/catalyst layer interface. The limitation due to oxygen diffusion in electrolyte film maintains the uniform distribution of the active region throughout the ordered catalyst layer.  相似文献   

16.
Computer simulation was performed for the processes occurring in the basic elements of the cathode (active layer, gas-diffusion layer) and bipolar plate of a fuel cell with Nafion as electrolyte and a platinum catalyst. Current generation in the active layer was considered together with the heat exchange processes (release of the heat formed in the active layer through the gas-diffusion layer into the bipolar plate), gas and vapor exchange in the gas-diffusion layer and process of the gas reagent (oxygen) saturation by water vapor in the bipolar plate channels. Voltammetric curves and dependences on the cathode potential of the power density, vapor flow dissipated from the active layer to the bipolar plate, actual active layer temperature and reduced partial pressures of oxygen and water vapors near the interface between the active and gas-diffusion layers were calculated. Analysis is performed of the way the heating of the cathode active layer intensifies the process of current generation in it, significantly increasing the value of overall characteristics of the cathode (current and power density).  相似文献   

17.
This work presents a study of transport properties (proton conductivity, methanol permeability, and water uptake) and acid-base properties of commercial Nafion-112, -115, and -117 membranes modified with tetrapropylammonium (TPA) cations. In the interaction between TPA hydroxide and protons of sulfonate groups in the Nafion matrix, some of the protons are shown to be bound to sulfonate groups and do not participate in transport processes. These findings are confirmed by IR spectroscopy, acid-base titration, and data on proton conductivity of the modified membranes. Proton conductivity of the modified membranes is shown to be effectively described by a percolation model with parameters that agree with published data for commercial Nafion membranes. Based on these results, a model is proposed for the interaction of TPA cations with the sulfonate groups in Nafion membranes. According to this model, TPA cations form hydrophobic clusters in hydrophilic regions of the polymer matrix, thus preventing some of the protonated sulfonate groups from participating in transport processes.  相似文献   

18.
We have developed a novel preparation procedure for an electrocatalyst layer with high utilization of catalyst for polymer electrolyte fuel cells. A commercial Pt catalyst supported on high surface area carbon black (Pt/CB) and Nafion ionomer solution was heated in an autoclave at 200 degrees C, followed by quenching to form the ink of the mixture. It was found that the cathode prepared with the new catalyst ink exhibited very high performance, i.e., high catalyst utilization and improved gas diffusivity. The microstructure analysis indicated that the autoclave treatment promoted an effective introduction of Nafion ionomer into primary pores of Pt/CB agglomerates, in which ca. 90% of Pt catalysts were supported. It was clearly observed by scanning transmission electron microscopy that Nafion ionomer was distributed more uniformly inside Pt/CB agglomerates, compared with those simply mixed with a ball mill in a conventional manner.  相似文献   

19.
The basic parameters that characterize the operation of the active layer of a cathode with Nafion are the effective coefficient of the diffusion of oxygen, the effective ionic conductance, and the thickness of the active layer. One of the deficiencies intrinsic to the fuel cells containing Nafion is their extreme sensitivity to the heat and moisture exchange. Nafion demands an optimum degree of humidification. Upon thoroughly draining the active layer of a cathode with Nafion, its effective ionic conductance substantially lowers, and large diffusion restrictions arise following the flooding of pores in the active layer. The goal of this work is to perform a comparison of values of some dimensional characteristics pertaining to the flooded and thoroughly drained active layers of a cathode with similar indicators of an active layer in its optimum (normal) state. It is demonstrated how one should perform the selection of the working thickness of an active layer that would provide for the efficiency of its functioning.  相似文献   

20.
The high-temperature morphology of supported liquid membranes (SLMs) prepared from perfluorinated membranes such as Nafion and Hyflon and hydrophobic ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMI-TFSI) has been investigated by small-angle X-ray scattering (SAXS). Proton conductivity results of SLMs before and after leaching show an increase in conductivity with temperature up to 160 °C in an anhydrous environment. DSC results show that crystallites within perfluorinated membranes are thermally stable up to 196 °C. High-temperature SAXS results have been used to correlate structure and morphology of supported liquid membranes with high-temperature conductivity data. The ionic liquid essentially acts as a proton solvent in a similar way to water in hydrated Nafion membranes and increases size of clusters, which allow percolation to be achieved more easily. The cation of the ionic liquid interacts with sulfonate groups within ionic domains through electrostatic interactions and displaces protons. Protons can associate with free anions of the ionic liquid, which are loosely associated with cations and can transport by hopping from anion sites within the membrane. The ionic liquid contributes to proton conductivity at high temperature through achievement of long-range ordering and subsequent percolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号