首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Cathodic oxygen reduction on the XC-72R carbon black modified by the products of pyrolysis of cobalt 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin (CoTMPP) (XC-72M) was studied in acidic and neutral electrolytes. Formation of new active centers on XC-72M is confirmed by voltammetric curves (specific charge density grows as compared to the XC-72R carbon black by 2–2.5 times) using the methods of rotating disk electrode (a shift in half-wave potential E 1/2 by 600 mV) and rotating ring-disk electrode (the fraction of the direct reaction increases to 70%). Herewith, the $\frac{{\partial E_{1/2} }} {{\partial pH}}$\frac{{\partial E_{1/2} }} {{\partial pH}} value in the range of pH 0.3–8.5 is −60 mV. It is shown that proton necessarily participates in the slow stage of the first electron transfer for the further occurrence of the direct reaction to water. At a transition from acidic solutions to neutral ones, the polarization curves converge for XC-72M and XC-72R, which is due to a decrease in the concentration of proton in the solution and variation of the mechanism of the oxygen reduction slow stage.  相似文献   

2.
A number of cathode catalysts were synthesized from nitrogen-containing organic complexes on XC-72R carbon black for an alkaline electrolyte. The catalysts were studied by the rotating disc electrode (RDE) technique. The polyacrilonitrile (PAN), phthalocyanine (Pc), and cobalt tetra(methoxyphenyl)porphyrin (CoTMPP) systems showed the highest activity. The slope of the oxygen polarization curves in the first region in 1 M KOH was 35–40 mV; this corresponds to concentration polarization in an alkaline solution in the O2-HO2 system. A cyclic voltammetry study demonstrated that the catalytic systems with the highest corrosion stability were Pc + Co + Fe/XC-72R and CoTMPP/XC-72R pyropolymer. The activity of the catalysts decreased by 20–25% compared with the initial current densities on average. An ethanol-oxygen fuel cell with a Fumasep FAA anionite membrane and nonplatinum catalysts was tested. The maximum power density was 32 mW/cm2 at 40°C. The stability test of the fuel cell showed that the materials used for the membrane-electrode assembly allowed more than 100 h of continuous operation with constant working characteristics.  相似文献   

3.
Ir–V nanoparticles supported on microstructure controlled carbon nanofibers (CNFs) or on carbon black, Vulcan XC-72 (XC-72), have been synthesized via chemical reduction, and the oxygen reduction reaction (ORR) properties of catalysts are investigated in this paper. The physico-chemical properties are characterized by high resolution transmission electron microscope (HRTEM), N2 physisorption and electrochemical analysis. HRTEM results show that the metal nanoparticles are separated on carbon support with well-controlled particle size, dispersity, and composition uniformity. Moreover, the metal nanoparticles on CNFs have a smaller size than those on XC-72. Cyclic voltammetric analysis reveals that Ir–V/CNFs exhibits a higher ORR activity than Ir–V/XC-72, and this may be associated with the smaller metal nanoparticles and the stronger metal-support interaction of Ir–V/CNFs. Linear sweep voltammetric analysis at different rotation rates proves that ORR on the Ir–V/CNFs electrode is a 4e? process.  相似文献   

4.
The kinetic parameters of oxygen reduction reaction on Vulcan XC72R carbon black, carbon black modified by pyrolysis products of cobalt 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrine named by MXC72R, and commercial Pt/C platinum catalyst have been considered. Comparison of their electrochemical properties including pH influence in a broad interval from 0.3 to 14.6 has shown platinum-similar behavior of MXC72R in the reaction under study. An increasing order of electrochemical activity for oxygen reduction reaction is obtained, namely XC72R?<?MXC72R?<?Pt/C. The mechanism of oxygen reduction reaction is discussed emphasizing the important accelerating role of protonation of adsorbed oxygen molecule and inhibiting role of oxygen-containing species (formed due to water molecule discharge) and strongly adsorbed foreign species. The importance of the research on oxygen reduction reaction in a broad pH interval to evaluate the efficiency of various precious metal-free catalytic systems in comparison to platinum is emphasized.  相似文献   

5.
In situ muSR and nuclear magnetic resonance (NMR) experiments on the investigation of methanol decomposition on Pt-Ru nanoscaled catalyst supported on Vulcan XC-72 carbon black (Pt-Ru/Vulcan XC-72) are presented. Avoided-level-crossing muon spin resonance measurements reveal the resonance line at magnetic field 2.018 T, we assign to transient CH2?OMu? formaldehyde muonated radical. Results obtained allow us to estimate the contribution of chemical decomposition reaction process for the formaldehyde—carbon oxide—hydrogen conversion on Pt-Ru/Vulcan XC-72 catalytic material. NMR spectrum of the methanol covered Pt-Ru/Vulcan XC-72 consists of three broad resonance lines. Two of them are assigned to OH and CH3 groups of methanol bound to the carbon black surface. Following the existing literature, which indicates that polymerization of formaldehyde readily takes place when the monomer is adsorbed on some active surface, the third one is assigned to the resonance signal of oligomeric species of formaldehyde. Taking into account the results of our experiments on electrochemical hydrogenation of carbon nanotubes, we do not exclude that the hydrogen arising as a result of methanol decomposition would also contribute to this signal. The high surface area of amorphous carbon nanoparticles of Vulcan XC-72 is favourable to adsorb the hydrogen on their surface.  相似文献   

6.
Highly methanol-tolerant CoSe nanoparticles supported on different carbon substrates were synthesized by microwave heating of glycerol solutions of cobalt(II) acetate and sodium selenite at different Se/Co mole ratios in the presence of different concentrations of acetic acid and ammonia. The resulting CoSe catalysts were used for the electrochemical oxygen reduction reaction (ORR) in acidic solution in the presence of methanol. The ORR activity of the catalyst was increased by increasing its Se content up to 50?mol%. The presence of acetic acid or ammonia in the synthesis solution significantly affects the electrocatalytic performance of the CoSe catalyst; highest activity was observed when the catalyst was synthesized at NH3/Co(II) mole ratio of 6. Among the catalysts prepared on different supports including carbon black (Vulcan XC-72R), and nanoporous carbons synthesized from resorcinol-formaldehyde and phloroglucinol-formaldehyde resins, the one supported on the carbon prepared from the last resin exhibited highest electrocatalytic activity for ORR.  相似文献   

7.
The potentiometric properties of all-solid-state nitrate-selective electrodes based on plasticized PVC and containing different types of nanosized carbon black were investigated. The use of a carbon black interlayer is shown to significantly improve the potentiometric response. The electrodes display a close-to-Nernstian slope in the range from 10?1 to 10?6 M, highly stable potentials and low membrane resistance. However, different analytical features were found depending on the type of carbon black used. The best long-term potential stability was observed for the electrode with Printex XE2-B carbon black that has a relatively high BET surface area (1000 m2?·?g?1) and an average particle size of 30 nm. Nevertheless, the electrodes with the Vulcan XC-72 (BET surface: 240 m2?·?g?1; average size: 55 nm) showed the most repeatable and reproducible standard potential. The lowest detection limit for nitrate (2.5·10?7 M) is observed for an electrode containing Vulcan XC-72.
Figure
The comparison of the potentiometric behavior of all-solid state ion-selective electrodes with the different types of the furnace carbon black is presented by employing the nitrate-selective membrane. The electrodes display a close-to-Nernstian slope, highly stable potentials and low membrane resistance  相似文献   

8.
Electrochemically active hybrid coatings based on cationic films, didodecyldimethylammonium bromide (DDDMAB), and poly(diallyldimethylammonium chloride) (PDADMAC) are prepared on glassy carbon electrode surface by cycling the film‐covered electrode repetitively in a pH 7 solution containing flavin adenine dinucleotide (FAD), and anionic hexacyanometalate (HCM) complexes, Fe(CN)63? and Ru(CN)64?. Cyclic voltammetric features of hybrid coatings resemble that of electron transfer process of surface‐confined redox species. Electrochemical quartz crystal microbalance (EQCM) was used to monitor the deposition of FAD on DDDMAB film. Cyclic voltammetric peak potentials of modified electrode were found to be shifted to more negative region with increasing pH of contacting solution with a slope value of 63.3mV per pH unit. The electrocatalytic behavior of FAD‐modified DDDMAB‐coated GCE and hybrid film electrodes was tested towards reduction of oxygen, S2O82?, SO52? and oxidation of SO32?. The application of FAD‐modified DDDMAB‐coated GCE for S2O82? estimation was demonstrated in amperometric mode. The sensitivity and detection limit (S/N=3) were 267.6 μA mM?1 and 2×10?6 M, respectively.  相似文献   

9.
The present research aimed at investigating the electrocatalytic properties and the electrochemical deposition of Pt nanoparticles on carbon powder, carbon nanotube and preparation of carbon and single wall carbon nanotube supported platinum electrodes. The Pt nanoparticles were synthesized by electroreduction of hexachloroplatinic acid in aqueous solution at ?200 mV. Electrocatalytic properties of the modified electrodes for oxygen reduction were investigated by cyclic voltammetry in O2 saturated solution containing 0.1 M HClO4. Methanol electrooxidation at the modified surfaces in 0.5 M HCLO4 was studied by cyclic voltammetry. The corresponding results showed that the Pt/SWCNT/GC electrode exhibits more improved catalytical activity than the Pt/C/GC electrode.  相似文献   

10.
Highly alkaline electrolytes have been shown to improve the formation rate of C2+ products in the electrochemical reduction of carbon dioxide (CO2) and carbon monoxide (CO) on copper surfaces, with the assumption that higher OH? concentrations promote the C?C coupling chemistry. Herein, by systematically varying the concentration of Na+ and OH? at the same absolute electrode potential, we demonstrate that higher concentrations of cations (Na+), rather than OH?, exert the main promotional effect on the production of C2+ products. The impact of the nature and the concentration of cations on the electrochemical reduction of CO is supported by experiments in which a fraction or all of Na+ is chelated by a crown ether. Chelation of Na+ leads to drastic decrease in the formation rate of C2+ products. The promotional effect of OH? determined at the same potential on the reversible hydrogen electrode scale is likely caused by larger overpotentials at higher electrolyte pH.  相似文献   

11.
Porphyrin nanorods (PNR) were prepared by ionic self‐assembly of two oppositely charged porphyrin molecules consisting of free base meso‐tetraphenylsulfonate porphyrin (H4TPPS42?) and meso‐tetra(N‐methyl‐4‐pyridyl) porphyrin (MTMePyP4+M=Sn, Mn, In, Co). These consist of H4TPPS42?? SnTMePyP4+, H4TPPS42?? CoTMePyP4+, H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods. The absorption spectra and transmission electron microscopic (TEM) images of these structures were obtained. These porphyrin nanostructures were used to modify a glassy carbon electrode for the electrocatalytic reduction of oxygen, and the oxidation of hydrazine and methanol at low pH. The cyclic voltammogram of PNR‐modified GCE in pH 2 buffer solution has five irreversible processes, two distinct reduction processes and three oxidation processes. The porphyrin nanorods modified GCE produce good responses especially towards oxygen reduction at ?0.50 V vs. Ag|AgCl (3 M KCl). The process of electrocatalytic oxidation of methanol using PNR‐modified GCE begins at 0.71 V vs. Ag|AgCl (3 M KCl). The electrochemical oxidation of hydrazine began at around 0.36 V on H4TPPS42?? SnTMePyP4+ modified GCE. The GCE modified with H4TPPS42?? CoTMePyP4+ H4TPPS42?? InTMePyP4+ and H4TPPS42?? MnTMePyP4+ porphyrin nanorods began oxidizing hydrazine at 0.54 V, 0.59 V and 0.56 V, respectively.  相似文献   

12.
Effect of polychromatic light on the electrochemical deposition of tellurium(IV) ions on a glass carbon electrode from acid solutions of 0.45 M Na2SO4 + 0.05 M H2SO4 with pH 2.2 was studied. It is shown that electrochemical reduction of tellurium(IV) is possible in two stages in the potentiodynamic mode at potentials in the range from 0 to ?1000 mV. Elementary tellurium is formed in the first stage (E = ?320 ± 20 mV) and is reduced to telluride ions in the second (E = ?700 ± 50 mV). It is demonstrated that, under potentiodynamic deposition conditions, visible light affects the generation of Te2? ions at potentials more positive than the electrochemical potential. The chronoamperometric method revealed differences in the behavior of transient currents in the dark and under illumination. The elemental composition and the film surface morphology were studied by electron-probe analysis.  相似文献   

13.
Carbon nanofibers synthesized via the thermo catalytic decomposition of methane were investigated for the first time as an electrocatalyst support in PEMFC cathodes. Their textural and physical properties make them a highly efficient catalyst support for cathodic oxygen reduction in low temperature PEMFC. Tests performed in MEAs showed that Pt supported on carbon nanofibers exhibited an enhancement of ca. 94% in power density at 0.600 V, in comparison with a commercial catalyst supported on conventional carbon black, Pt/Vulcan XC-72R.  相似文献   

14.
This study demonstrates the application of the composite of multi-walled carbon nanotube polyvinylchloride (MWCNT-PVC) based on Bismarck Brown R for gallium sensor. MWCNT has a role to enhance the hydrophobicity of the membrane, which leads to a more stable potential signal. In addition by applying polypyrrol on the surface of this sensor a reduction in the drift of potential occurred and equilibrium potential was achieved faster. Compared to previous studies, using a stainless steel disc instead of a wire electrode causes to obtain an easily and more homogeneous coated electrode. The sensor shows a good Nernstian slope of 19.70?±?0.37?mV?decade?1 in a wide linear range concentration of 1.0?×?10?7 to 1.0?×?10?2?M of Ga(NO3)3. The detection limit of this electrode was 7.7?×?10?8?M of Ga(NO3)3. This proposed sensor is applicable in a wide pH range of 2 to 8. It has a short response time of about 8?s and has a good selectivity over twenty four various metal ions. The practical analytical utility of this electrode is demonstrated by measurement of Ga(III) in rock and different water samples.  相似文献   

15.
刘景军  金学民  宋薇薇  王峰  王楠  宋夜 《催化学报》2014,35(7):1173-1188
以VulcanXC-72炭黑为载体,通过对炭载体石墨化处理和表面化学修饰,将其与化学沉淀法制备的纳米级LaMnO3颗粒共混,再经特定温度下煅烧,制备出改性炭黑-LaMnO3复合材料.X射线光电子能谱和热重分析表明,当煅烧温度在300℃时,炭载体与LaMnO3纳米颗粒之间形成了大量C-O-M(M=La,Mn)化学键.扫描电子显微镜和高分辨透射电子显微镜分析发现,纯相LaMnO3纳米颗粒主要呈现短棒、三支棒或竹节棒的形貌特征,炭载体则为具有完整石墨层的空心球结构,LaMnO3均匀分散在炭载体上.在25℃,1mol/LNaOH溶液中的电化学测试结果表明,成分比(LaMnO3:C)为2:3的复合材料具有很高的氧还原电催化活性,氧还原反应电子数为3.81,中间产物H2O2产率为9.5%,其活性接近商业Pt/C催化剂(E-TEK).高的氧还原电催化活性主要归因于LaMnO3纳米颗粒与炭载体之间形成了大量共价键.  相似文献   

16.
《Electroanalysis》2004,16(8):627-632
The direct electrochemistry of catalase (Ct) was accomplished at a gold electrode modified with single‐wall carbon nanotubes (SWNTs). A pair of well‐defined redox peaks was obtained for Ct with the reduction peak potential at ?0.414 V and a peak potential separation of 32 mV at pH 5.9. Both reflectance FT‐IR spectra and the dependence of the reduction peak current on the scan rate revealed that Ct adsorbed onto the SWNT surfaces. The redox wave corresponds to the Fe(III)/Fe(II) redox center of the heme group of the Ct adsorbate. Compared to other types of carbonaceous electrode materials (e.g., graphite and carbon soot), the electron transfer rate of Ct redox reaction was greatly enhanced at the SWNT‐modified electrode. The peak current was found to increase linearly with the Ct concentration in the range of 8×10?6–8×10?5 M used for the electrode preparation and the peak potential was shown to be pH dependent. The catalytic activity of Ct adsorbates at the SWNTs appears to be retained, as the addition of H2O2 produced a characteristic catalytic redox wave. This work demonstrates that direct electrochemistry of redox‐active biomacromolecules such as metalloenzymes can be improved through the use of carbon nanotubes.  相似文献   

17.
罗昪  周芬  潘牧 《高等学校化学学报》2022,43(4):20210853-86
层级多孔碳作为氧还原铂基催化剂载体的选择之一, 简单的旋转圆盘电极(RDE)验证此类催化剂具有较高的氧还原活性, 但几乎都缺少膜电极(MEA)性能验证, 实用性无法保证. 本文设计制备了基于聚苯胺的层级多孔碳(NHPC)载铂催化剂(Pt/NHPC850), 研究了其氧还原活性、 MEA质子传输和氧传输特性. RDE测试研究表明, Pt/NHPC850催化剂在低I/C(离聚物与碳载体质量比)时的面积活性低于实心碳载铂催化剂(Pt/XC-72), 但当I/C增大到与膜电极中一致时, 由于Nafion树脂对Pt催化剂的毒化作用增强, 其面积活性反而优于 Pt/XC-72. Pt/NHPC850催化剂的高Pt分散性及其优异的抗Nafion毒化性能, 使其在I/C为0.8时的质量活性为Pt/XC-72催化剂的1.34倍. MEA质子传输研究表明, 即使在高加湿条件下, Pt/NHPC850质子电阻率仍高达72.6 mΩ·cm2, 为Pt/XC-72的3倍. Pt/NHPC850制备的膜电极极化曲线在500 mA/cm2电流密度下性能迅速下降, Pt/NHPC850的氧增益电压达到144.4 mV, 比Pt/XC-72高56.7 mV. 表明Pt/NHPC850膜电极的质子传输和氧传输性能较差. 对比Pt/NHPC850催化剂的RDE和MEA的测试结果, 说明以层级多孔碳为载体的铂碳催化剂虽然耐Nafion毒化能力提高, 但是质子和氧气的氧传输性较差, 此类层级多孔碳还需进一步优化其结构, 才有可能满足低铂质子交换膜燃料电池(PEMFC)的应用需求.  相似文献   

18.
The electrocatalytic reduction of nitrite has been studied by poly(ortho‐toluidine) films modified carbon paste electrode (P‐OT/MCPE). Cyclic voltammetry and chronoamperometry techniques were used to investigate the suitability of poly(ortho‐toluidine) as a mediator for the electrocatalytic nitrite reduction in aqueous solution with various pH. Results showed that pH 0.00 is the most suitable for this purpose. In the optimum pH, the reduction of nitrite occurs at a potential about 600 mV more positive than unmodified carbon paste electrode. The catalytic reaction rate constant, (kh), was calculated 8.68×102 M?1 s?1 by the data of chronoamperometry. The catalytic reduction peak current was linearly dependent on the nitrite concentration and the linearity range obtained was 5.00×10?4 M–1.90×10?2 M. Detection limit has been found to be 3.38×10?4 M (2σ). This method has been successfully employed for quantification of nitrite in real sample.  相似文献   

19.
Redox cycling of iron is a critical aspect of iron toxicity. Reduction of a low‐molecular‐weight iron(III)‐complex followed by oxidation of the iron(II)‐complex by hydrogen peroxide may yield the reactive hydroxyl radical (OH.) or an oxoiron(IV) species (the Fenton reaction). Complexation of iron by a ligand that shifts the electrode potential of the complex to either to far below ?350 mV (dioxygen/superoxide, pH=7) or to far above +320 mV (H2O2/HO., H2O pH=7) is essential for limitting Fenton reactivity. The oral chelating agents CP20, CP502, CP509, and ICL670 effectively remove iron from patients suffering from iron overload. We measured the electrode potentials of the iron(III) complexes of these drugs by cyclic voltammetry with a mercury electrode and determined the dependence on concentration, pH, and stoichiometry. The standard electrode potentials measured are ?620 mV, ?600 mV, ?535 mV, and ?535 mV with iron bound to CP20, ICL670, CP502, and CP509, respectively, but, at lower chelator concentrations, electrode potentials are significantly higher.  相似文献   

20.
In this study, direct electron transfer (ET) has been achieved between an immobilised non-symbiotic plant haemoglobin class II from Beta vulgaris (nsBvHb2) and three different screen-printed carbon electrodes based on graphite (SPCE), multi-walled carbon nanotubes (MWCNT-SPCE), and single-walled carbon nanotubes (SWCNT-SPCE) without the aid of any electron mediator. The nsBvHb2 modified electrodes were studied with cyclic voltammetry (CV) and also when placed in a wall-jet flow through cell for their electrocatalytic properties for reduction of H2O2. The immobilised nsBvHb2 displayed a couple of stable and well-defined redox peaks with a formal potential (E°′) of ?33.5 mV (vs. Ag|AgCl|3 M KCl) at pH 7.4. The ET rate constant of nsBvHb2, k s, was also determined at the surface of the three types of electrodes in phosphate buffer solution pH 7.4, and was found to be 0.50 s?1 on SPCE, 2.78 s?1 on MWCNT-SPCE and 4.06 s?1 on SWCNT-SPCE, respectively. The average surface coverage of electrochemically active nsBvHb2 immobilised on the SPCEs, MWCNT-SPCEs and SWCNT-SPCEs obtained was 2.85?×?10?10 mol cm?2, 4.13?×?10?10 mol cm?2 and 5.20?×?10?10 mol cm?2. During the experiments the immobilised nsBvHb2 was stable and kept its electrochemical and catalytic activities. The nsBvHb2 modified electrodes also displayed an excellent response to the reduction of hydrogen peroxide (H2O2) with a linear detection range from 1 μM to 1000 μM on the surface of SPCEs, from 0.5 μM to 1000 μM on MWCNT-SPCEs, and from 0.1 μM to 1000 μM on SWCNT-SPCEs. The lower limit of detection was 0.8 μM, 0.4 μM and 0.1 μM at 3σ at the SPCEs, the MWCNT-SPCEs, and the SWCNT-SPCEs, respectively, and the apparent Michaelis–Menten constant, $ {\hbox{K}}_{\rm{M}}^{\rm{app}} $ , for the H2O2 sensors was estimated to be 0.32 mM , 0.29 mM and 0.27 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号