首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of cis-Ru(acac)2(CH3CN)2 (acac = acetylacetonate) with 2,2'-dipyridylamine (L) in ethanolic medium resulted in facile one-pot synthesis of stable [(acac)2RuIII(L)]ClO4 ([1]ClO4), trans-[(acac)2RuII(L)2] (2), trans-[(acac)2RuIII)L)2]ClO4 ([2]ClO4), and cis-[(acac)2RuII(L)2] (3). The bivalent congener 1 was generated via electrochemical reduction of [1]ClO4. Although in [1]+ the dipyridylamine ligand (L) is bonded to the metal ion in usual bidentate fashion, in 2/[2]+ and 3, the unusual monodentate binding mode of L has been preferentially stabilized. Moreover, in 2/[2]+ and 3, two such monodentate L's have been oriented in the trans- and cis-configurations, respectively. The binding mode of L and the isomeric geometries of the complexes were established by their single-crystal X-ray structures. The redox stability of the Ru(II) state follows the order 1 < 2 < 3. In contrast to the magnetic moment obtained for [1]ClO4, mu = 1.84 muB at 298 K, typical for low-spin Ru(III) species, the compound [2]ClO4 exhibited an anomalous magnetic moment of 2.71 muB at 300 K in the solid state. The variable-temperature magnetic measurements showed a pronounced decrease of the magnetic moment with the temperature, and that dropped to 1.59 muB at 3 K. The experimental data can be fitted satisfactorily using eq 2 that considered nonquenched spin-orbit coupling and Weiss constant in addition to the temperature-independent paramagnetism. [1]ClO4 and [2]ClO4 displayed rhombic and axial EPR spectra, respectively, in both the solid and the solution states at 77 K.  相似文献   

2.
In order to model the photoinduced electron-transfer reactions from the manganese cluster to the photoactive P680 chlorophylls in photosystem II, three heterohexanuclear complexes, [Mn2III,IVO2[RuII(bpy)2(Ln)]4]11+ [bpy = 2,2'-bipyridine, n = 2 (1a), 4 (1b), 6 (1c)], in which one MnIII,IV(micro-O)2 center is covalently linked to four RuII(bpy)3-like moieties by bridged bis(bipyridine) Ln ligands, have been synthesized and characterized. The electrochemical, photophysical, and photochemical properties of these complexes have been investigated in CH3CN. The cyclic voltammograms and rotating-disk electrode curves of the three complexes show the presence of two very close successive reversible oxidation processes corresponding to the Mn2III,IV/Mn2IV,IV and RuII/RuIII redox couples (estimated E1/2 approximately 0.82 and 0.90 V, respectively). The lower potential of the Mn2III,IV subunit compared to those of the RuII moieties indicates that the RuIII species can act as an efficient oxidant toward the Mn2III,IV core. The two oxidized forms of the complexes [Mn2IV,IVO2[RuII(bpy)2(Ln)]4]12+ (2a-c) and [Mn2IV,IVO2[RuIII(bpy)2(Ln)]4]16+ (3a-c) obtained in good yields (>90% for 2a-c and >85% for 3a-c) by sequential electrolyses are very stable. Photophysical studies show that the 3MLCT excited state of the Ru(bpy)3 centers is moderately quenched by the Mn2III,IV(micro-O)2 core (15-25% depending on the length of the bridging alkyl chain). Nevertheless, this energy transfer can be easily short-circuited in the presence of an external irreversible electron acceptor like the (4-bromophenyl)diazonium cation, by an electron transfer leading, in a stepwise fashion, to the stable one- and five-electron-oxidized species 2a-c and 3a-c, respectively, also in good yields, under continuous irradiation of the solutions. Electro- and photoinduced oxidation experiments have been followed by UV-visible and electron paramagnetic resonance spectroscopy.  相似文献   

3.
The dinuclear complex [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)2-3,5]22-) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)2-2,6]-) followed by a reaction with 2,2':6',2' '-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 are compared with those of the closely related [(tpy)RuII(NCN-NCN)RuII(tpy)](PF6)2 (NCN-NCN = [C6H2(CH2NMe2)2-3,5]22-) obtained by two-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4. The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4 and one-electron oxidation of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 yielded the mixed-valence species [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ and [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+, respectively. The comproportionation equilibrium constants Kc (900 and 748 for [(tpy)RuIII(NCN-NCN)RuIII(tpy)]4+ and [(tpy)RuII(PCP-PCP)RuII(tpy)]2+, respectively) determined from cyclic voltammetric data reveal comparable stability of the [RuIII-RuII] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+ and [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups.  相似文献   

4.
Ruthenium bis(beta-diketonato) complexes have been prepared at both the RuII and RuIII oxidation levels and with protonated and deprotonated pyridine-imidazole ligands. RuII(acac)2(py-imH) (1), [RuIII(acac)2(py-imH)]OTf (2), RuIII(acac)2(py-im) (3), RuII(hfac)2(py-imH) (4), and [DBU-H][RuII(hfac)2(py-im)] (5) have been fully characterized, including X-ray crystal structures (acac = 2,4-pentanedionato, hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionato, py-imH = 2-(2'-pyridyl)imidazole, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene). For the acac-imidazole complexes 1 and 2, cyclic voltammetry in MeCN shows the RuIII/II reduction potential (E1/2) to be -0.64 V versus Cp2Fe+/0. E1/2 for the deprotonated imidazolate complex 3 (-1.00 V) is 0.36 V more negative. The RuII bis-hfac analogues 4 and 5 show the same DeltaE1/2 = 0.36 V but are 0.93 V harder to oxidize than the acac derivatives (0.29 and -0.07 V). The difference in acidity between the acac and hfac derivatives is much smaller, with pKa values of 22.1 and 19.3 in MeCN for 1 and 4, respectively. From the E1/2 and pKa values, the bond dissociation free energies (BDFEs) of the N-H bonds in 1 and 4 are calculated to be 62.0 and 79.6 kcal mol(-1) in MeCN - a remarkable difference of 17.6 kcal mol(-1) for such structurally similar compounds. Consistent with these values, there is a facile net hydrogen atom transfer from 1 to TEMPO* (2,2,6,6-tetramethylpiperidine-1-oxyl radical) to give 3 and TEMPO-H. The DeltaG degrees for this reaction is -4.5 kcal mol(-1). 4 is not oxidized by TEMPO* (DeltaG degrees = +13.1 kcal mol(-1)), but in the reverse direction TEMPO-H readily reduces in situ generated RuIII(hfac)2(py-im) (6). A RuII-imidazoline analogue of 1, RuII(acac)2(py-imnH) (7), reacts with 3 equiv of TEMPO* to give the imidazolate 3 and TEMPO-H, with dehydrogenation of the imidazoline ring.  相似文献   

5.
Complexes of the type [RuIII(L)Cl2(PPh3)2] and [RuII(L)2(PPh3)2] (HL=benzoylacetone or acetylacetone) have been synthesized by the reaction of [RuCl2(PPh3)3] with HL under various experimental conditions. The [RuIII(L)Cl2(PPh3)2] complexes are one-electron paramagnetic species and, in solution, they show intense LMCT transitions in the visible region together with weak ligand-field transitions at lower energies. The [RuII(L)2(PPh3)2] complexes are diamagnetic and their solutions show sharp 1H n.m.r. signals and also show intense MLCT transitions in the visible region. In MeCN solution, the [RuIII(L)Cl2(PPh3)2] complexes show a reversible RuIII-RuII reduction near –0.3V and an irreversible RuIII- RuIV oxidation near 1.2 V versus s.c.e. A reversible RuII-RuIII oxidation is displayed by the [RuII(L)2(PPh3)2] complexes in MeCN solution near 0.3 V versus s.c.e. followed by another reversible RuIII-RuIV oxidation near 1.1 V versus s.c.e. The [RuII(L)2(PPh3)2] complexes have been oxidized to the corresponding [RuIII(L)2(PPh3)2]+ analogues and isolated as ClO4– salts in the solid state. The oxidized complexes are one-electron paramagnetic. They are 1:1 electrolytes in solution and show intense LMCT transitions in the visible region along with weak ligand-field transitions at lower energies.  相似文献   

6.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

7.
The title complexes were obtained in neutral form (n = 0) as rac (1) and meso isomers (2). 2 was crystallized for X-ray diffraction and its temperature-dependent magnetism studied. It contains two antiferromagnetically coupled ruthenium(III) ions, bridged by the quinizarine dianion QL(2-) (quinizarine = 1,4-dihydroxy-9,10-anthraquinone). The potential of both the ligand (QLo --> QL4-) and the metal complex fragment combination [(acac)2RuII]2 --> ([(acac)2RuIV]2)4+ to exist in five different redox states creates a large variety of combinations, which was assessed for the electrochemically reversibly accessible 2+, 1+, 0, 1-, 2- forms using cyclic voltammetry as well as EPR and UV-vis-NIR spectroelectrochemistry. The results for the two isomers are similar: Oxidation to 1+ or 2+ causes the emergence of a near-infrared band (1390 nm), without revealing an EPR response even at 4 K. Reduction to 1- or 2- produces an EPR signal, signifying metal-centered spin but no near-infrared absorption. Tentatively, we assume metal-based oxidation of [(acac)2RuIII(mu-QL2-)RuIII(acac)2] to a mixed-valent intermediate [(acac)2RuIII(mu-QL2-)RuIV(acac)2]+ and ligand-centered reduction to a radical complex [(acac)2RuIII(mu-QL.3-)RuIII(acac)2 (-) with antiferromagnetic three-spin interaction.  相似文献   

8.
Redox potentials of photosensitive cyclometalated RuII derivatives of 2-phenylpyridine or 2-(4-tolyl)pyridine are controllably decreased by up to 0.8 V within several minutes. This is achieved by irradiation of the ruthena(II)cycles cis-[Ru(o-X-2-py)(LL)(MeCN)2]PF6 (2, X = C6H4 (a) or 4-MeC6H3 (b), LL = 1,10-phenanthroline or 2,2'-bipyridine). The cis geometry of the MeCN ligands has been confirmed by the X-ray structural studies. The sigma-bound sp2 carbon of the metalated ring is trans to LL nitrogen. Complexes 2 are made from [Ru(o-X-2-py)(MeCN)4]PF6 (1) and LL. This "trivial" ligand substitution is unusual because 1a reacts readily with phen in MeCN as solvent to give cis-[Ru(o-C6H4-2-py)(phen)(MeCN)2]PF6 (2c) in a 83% yield, but bpy does not afford the bpy-containing 2 under the same conditions. cis-[Ru(o-C6H4-2-py)(bpy)(MeCN)2]PF6 (2e) has been prepared in CH2Cl2 (74%). Studies of complexes 2c,e by cyclic voltammetry in MeOH in the dark reveal RuII/III quasy-reversible redox features at 573 and 578 mV (vs Ag/AgCl), respectively. A minute irradiation 2c and 2e converts them into new species with redox potentials of -230 and 270 mV, respectively. An exceptional potential drop for 2c is accounted for in terms of a photosubstitution of both MeCN ligands by methanol. ESR, 1H NMR, and UV-vis data indicate that the primary product of photolysis of 2c is an octahedral monomeric low-spin (S = 1/2) RuIII species, presumably cis-[RuIII(o-C6H4-2-py)(phen)(MeOH)2]2+. The primary photoproduct of bpy complex 2e is cis-[RuII(o-C6H4-2-py)(bpy)(MeCN)(MeOH)]+, and this accounts for a lower decrease in the redox potential. Irradiation of 2c in the presence of added chloride affords [(phen)(o-C6H4-2-py)ClRuIIIORuIVCl(o-C6H4-2-py)(phen)]PF6, a first mu-oxo-bridged mixed valent dimer with a cyclometalated unit. The structure of the dimer has been established by X-ray crystallography.  相似文献   

9.
Three pairs of mononuclear geometrical isomers containing the ligand 3,5-bis(2-pyridyl)pyrazole (Hbpp) of general formula in- and out-[RuII(Hbpp)(trpy)X](n+) (trpy=2,2':6',2' '-terpyridine; X=Cl, n=1, 2a,b; X=H2O, n=2, 3a,b; X=py (pyridine), n=2, 4a,b) have been prepared through two different synthetic routes, isolated, and structurally characterized. The solid state structural characterization was performed by X-ray diffraction analysis of four complexes: 2a-4a and 4b. The structural characterization in solution was performed by means of 1D and 2D NMR spectroscopy for complexes 2a,b and 4a,b and coincides with the structures found in the solid state. All complexes were also spectroscopically characterized by UV-vis which also allowed us to carry out spectrophotometric acid-base titrations. Thus, a number of species were spectroscopically characterized with the same oxidation state but with a different degree of protonation. As an example, for 3a three pKa values were obtained: pKa1(RuII)=2.13, pKa2(RuII)=6.88, and pKa3(RuII)=11.09. The redox properties were also studied, giving in all cases a number of electron transfers coupled to proton transfers. The pH dependency of the redox potentials allowed us to calculate the pKa of the complexes in the Ru(III) oxidation state. For complex 3a, these were found to be pKa1(RuIII)=0.01, pKa2(RuIII)=2.78, and pKa3(RuIII)=5.43. The oxidation state Ru(IV) was only reached from the Ru-OH2 type of complexes 3a or 3b. It has also been shown that the RuIV=O species derived from 3a is capable of electrocatalytically oxidizing benzyl alcohol with a second-order rate constant of kcat=17.1 M(-1) s(-1).  相似文献   

10.
The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1- [VO2L1]- and 2 [(VOL2)2(OMe)2] (where H2L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2' '-yl)-1H-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies. For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.  相似文献   

11.
Zhou JH  Cheng RM  Song Y  Li YZ  Yu Z  Chen XT  Xue ZL  You XZ 《Inorganic chemistry》2005,44(22):8011-8022
Novel polynuclear Cu(II) complexes containing derivatives of 1,2,4-trizaole and pivalate ligands, [Cu(3)(mu(3)-OH)(mu-adetrz)(2)(piv)(5)(H(2)O)].6.5H(2)O (1) (adetrz = 4-amino-3,5-diethyl-1,2,4-triazole, piv = pivalate), [Cu(4)(mu(3)-OH)(2)(mu-atrz)(2)(mu-piv)(4)(piv)(2)].2MeOH.H(2)O (2) (atrz = 4-amino-1,2,4-triazole), [Cu(4)(mu(3)-OH)(2)(mu-tbtrz)(2)(mu-piv)(2)(piv)(4)].4H(2)O (3) (tbtrz = 4-tert-butyl-1,2,4-trizaole), and [Cu(4)(mu(3)-O)(2)(mu-admtrz)(4)(admtrz)(2)(mu-piv)(2)(piv)(2)].2[Cu(2)(mu-H(2)O)(mu-admtrz)(piv)(4)].13H(2)O [4 = 4a.2(4b).13H(2)O; admtrz = 4-amino-3,5-dimethyl-1,2,4-triazole], have been prepared and structurally characterized. 1 is an asymmetrical triangular complex containing a [Cu(3)(mu(3)-OH)] core with two Cu---Cu edges spanned by bridging adetrz ligands. 2, 3, and 4a are novel tetranuclear compounds containing a [Cu(4)(mu(3)-O)(2)] or [Cu(4)(mu(3)-OH)(2)] core with Cu---Cu edges spanned by bridging 1,2,4-triazole or pivalate ligands. 4b is a dinuclear compound with one admtrz and one water bridge, and it is the first dinuclear Cu(II) triazole complex with one bridging water molecule. 1 is one of few reported triangular Cu(II) complexes with derivatives of 1,2,4-triazole, while 2, 3, and 4a are the first group of the nonlinear tetranuclear Cu(II) compounds with derivatives of 1,2,4-triazole. Variable-temperature magnetic susceptibility studies on the powder samples of 1-3 reveal the overall antiferromagnetic coupling between Cu(II) ions with J values of -55.6 to -12.8 cm(-1) (1), -216.4 to 0 cm(-1) (2), and -259.8 to 4.8 cm(-1) (3).  相似文献   

12.
Reactions of (H 2azole) 2[OsCl 6], where Hazole = pyrazole, Hpz, ( 1), indazole, Hind, ( 2), imidazole, Him, ( 3) and benzimidazole, Hbzim, ( 4) with the corresponding azole heterocycle in 1:4 molar ratio in boiling isoamyl alcohol or hexanol-1 afforded novel water-soluble osmium(III) complexes of the type trans-[OsCl 2(Hazole) 4]Cl, where Hazole = Hpz ( 5a), Hind ( 6a), Him ( 7a), and Hbzim ( 9a) in 50-70% ( 5a, 7a, 9a) and 5% ( 6a) yields. The synthesis of 7a was accompanied by a concurrent reaction which led to minor formation (<4%) of cis-[OsCl 2(Him) 4]Cl ( 8). The complexes were characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, ESI mass spectrometry, cyclic voltammetry, and X-ray crystallography. 5a, 7a, and 9a were found to possess remarkable antiproliferative activity in vitro against A549 (non-small cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma) cells, which was compared with that of related ruthenium compounds trans-[RuCl 2(Hazole) 4]Cl, where Hazole = Hpz (5b), Hind (6b), Him (7b), and Hbzim (9b).  相似文献   

13.
The synthesis of trans-[RuCl(NO)(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) can be accomplished by either the addition of cyclam to K2[RuCl5NO] or by the addition of NO to trans-[RuCl(CF3SO3)(cyclam)](CF3-SO3). Crystals of trans-[RuCl(NO)(cyclam)](ClO4)2 form in the monoclinic space group P2(1)/c, with unit cell parameters of a = 7.66500(2) A, b = 24.7244(1) A, c = 16.2871(2) A, beta = 95.2550(10) degrees, and Z = 4. One of the two independent molecules in the unit cell lies disordered on a center of symmetry. For the ion in the general position, the Ru-N and N-O bond distances and the [Ru-N-O]3+ bond angle are 1.747(4) A, 1.128(5) A, 178.0(4) degrees, respectively. In both ions, cyclam adopts the (R,R,S,S) configuration, which is also consistent with 2D COSY 1H NMR studies in aqueous solution. Reduction (E degree = -0.1 V) results in the rapid loss of Cl- by first-order kinetics with k = 1.5 s-1 and the slower loss of NO (k = 6.10 x 10(-4) s-1, delta H++ = 15.3 kcal mol-1, delta S++ = -21.8 cal mol-1 K-1). The slow release of NO following reduction causes trans-[RuCl(NO)(cyclam)]2+ to be a promising controlled-release NO prodrug for vasodilation and other purposes. Unlike the related complex trans-[Ru(NO)(NH3)4(P(OEt)3)](PF6)2, trans-[RuCl(NO)(cyclam)]Cl2 is inactive in modulating evoked potentials recorded from mice hippocampal slices probably because of the slower dissociation of NO following reduction.  相似文献   

14.
We report a femtosecond pump-probe study on the photochemistry of concentrated aqueous solutions of [RuII(bpy)3]2+, as a function of pump power (up to 2 TW/cm2) at 400 nm excitation. The transient absorption spectra in the 345-660 nm range up to 1 ns time delay enable the observation of the following photoproducts: the triplet 3MLCT (metal-to-ligand-charge-transfer) excited state, the reduced form [RuII(bpy)3]+, the oxidized species [RuIII(bpy)3]3+, and the solvated electron e(aq). The 3MLCT state is formed within the excitation pulse and undergoes vibrational relaxation in 3-5 ps, as evidenced by the shift of the ligand-centered (LC) absorption band below 400 nm. Even at the highest pump powers, the majority of e(aq) originates from multiphoton ionization of [RuII(bpy)3]2+ and not from the solvent, generating [RuIII(bpy)3]3+ as a byproduct. At 10 ps time delay, the total concentration of the three product species is balanced by the depleted concentration of [RuII(bpy)3]2+, even at the highest fluences used, indicating that no further reaction products significantly contribute to the overall photochemistry. On the 100 ps time scale, most probably diffusion-controlled reduction of ground-state [RuII(bpy)3]2+ by solvated electrons occurs, next to recombination between e(aq) and [RuIII(bpy)3]3+.  相似文献   

15.
Three novel 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles were designed,synthesized and characterized by IR,NMR and APCI-MS.3-o-Fluorophenyl-6-(4-decarboxydehydroabietyl)-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole(6a,C28H31FN4S) was structurally determined by single-crystal X-ray diffraction.The crystal belongs to the orthorhombic system,space group P212121 with a=6.0153(14),b=12.2577(19),c=34.055(3),V=2511.0(7)3,Z=4,Mr=474.63,Dc=1.255Mg/m3,λ=0.71073 ,μ(MoKα)=0.160 mm-1,F(000)=1008,the final R=0.0555 and wR=0.1248 for 3094 observed reflections with I2σ(I).There are six rings in the crystal structure of the title compound.The dihedral angle between 1,2,4-triazole and 1,3,4-thiadiaole rings is 1.4o,and that between 1,2,4-triazole and benzene ring D 25.5o.  相似文献   

16.
A series of new silver(I)-containing MOFs [Ag(2)(tr(2)ad)(2)](ClO(4))(2) (1), [Ag(2)(VO(2)F(2))(2)(tr(2)ad)(2)]·H(2)O (2), [Ag(2)(VO(2)F(2))(2)(tr(2)eth)(2)(H(2)O)(2)] (3), and [Ag(2)(VO(2)F(2))(2)(tr(2)cy)(2)]·4H(2)O (4) supported by 4-substituted bifunctional 1,2,4-triazole ligands (tr(2)ad = 1,3-bis(1,2,4-triazol-4-yl)adamantane, tr(2)eth = 1,2-bis(1,2,4-triazol-4-yl)ethane, tr(2)cy = trans-1,4-bis(1,2,4-triazol-4-yl)cyclohexane) were hydrothermally synthesized and structurally characterized. In these complexes, the triazole heterocycle as an N(1),N(2)-bridge links either two adjacent Ag-Ag or Ag-V centers at short distances forming polynuclear clusters. The crystal structure of compound 1 is based on cationic {Ag(2)(tr)(4)}(2+) fragments connected in a 2D rhombohedral grid network with (4,4) topology. The neighboring layers are tightly packed into a 3D array by means of argentophilic interactions (Ag···Ag 3.28 ?). Bridging between different metal atoms through the triazole groups assists formation of heterobimetallic Ag(I)/V(V) secondary building blocks in a linear V-Ag-Ag-V sequence that is observed in complexes 2-4. These unprecedented tetranuclear {Ag(2)(VO(2)F(2))(2)(tr)(4)} units (the intermetal Ag-Ag and Ag-V distances are 4.24-4.36 and 3.74-3.81 ?, respectively), in which vanadium(V) oxofluoride units possess distorted trigonal bipyramidal environment {VO(2)F(2)N}ˉ, are incorporated into 1D ribbon (2) or 2D square nets (3, 4) using bitopic μ(4)-triazole ligands. The valence bond calculation for vanadium atoms shows +V oxidation state in the corresponding compounds. Thermal stability and photoluminescence properties were studied for all reported coordination polymers.  相似文献   

17.
The known Os(IV)-cyanoimido complexes, mer-Et4N[OsIV(bpy)(Cl)3(NalphaCNbeta)] (mer-[OsIV=N-CN]-) (bpy = 2,2'-bipyridine) and trans-[OsIV(tpy)(Cl)2(NalphaCNbeta)] (trans-[OsIV=N-CN]) (2,2':6',2' '-terpyridine), have formal electronic relationships with high oxidation state Ru and Os-oxo and -dioxo complexes. These include multiple bonding to the metal, the ability to undergo multiple electron transfer, and the availability of nonbonding electron pairs for donation. Thermodynamic, oxo-like behavior is observed for mer-[OsIV=N-CN]- in the pH-dependence of its Os(VI/V) to Os(III/II) redox couples in 1:1 (v/v) CH3CN:H2O. Oxo-like behavior is also observed in the reaction between mer-[OsVI(bpy)(Cl)3(NalphaCNbeta)]PF6 and benzyl alcohol to give mer-[OsIV(bpy)(Cl)3(NalphaCNbetaH2)]PF6 and benzaldehyde. The reaction is first order in each reactant with kbenzyl(CH3CN, 25.0 +/- 0.1 degrees C) = (8.6 +/- 0.2) x 102 M-1 s-1. Formal NCN degrees transfer, analogous to O-atom transfer, occurs in reactions with tertiary phosphine and hexenes. In CH3CN under N2, a rapid reaction occurs between trans-[OsIV=N-CN] and PPh3 (kPPh3(DMF, 25.0 +/- 0.1 degrees C) = 4.06 +/- 0.02 M-1 s-1) to form the nitrilic N-bound Os(II)-(N-cyano)iminophosphorano product, trans-[OsII(tpy)(Cl)2(NalphaCNbetaPPh3)] (trans-[OsII-NalphaC-Nbeta=PPh3]). It undergoes solvolysis at 45 degrees C after 24 h to give trans-[OsII(tpy)(Cl)2(NCCH3)] and (N-cyano)iminophosphorane (NalphaC-Nbeta=PPh3). The analogue to epoxidation, N-cyanoaziridination of cyclohexene and 1-hexene by mer-[OsIV=N-CN]- and trans-[OsIV=N-CN], occurs at Nbeta to give the Os(IV)-N-cyanoaziridino complexes, mer-Et4N[OsII(bpy)(Cl)3(NalphaCNbetaC6H10)] and trans-[OsII(tpy)(Cl)2(NalphaCNbetaC6H11)], respectively. Oxidation to mer-[OsV(bpy)(Cl)3(NalphaCNbeta)]- greatly accelerates N-cyanoaziridination of cyclohexene, which is followed by slow solvolysis to give mer-[OsIII(bpy)(Cl)3(NCCH3)] and N-cyanoaziridine (NC-NC6H10). The Os-(N-cyano)aziridino complexes are the first well-characterized examples of coordinated cyanoaziridines.  相似文献   

18.
A new cobalt(Ⅱ) complex, [CoL2(NCS)2]·2CH2Cl2, [L=4-(p-methylphenyl)-3,5-bis(pyridin-2-yl)-1,2,4-triazole], was synthesized and its crystal structure was determined by X-ray analysis. The complex crystallizes in monoclinic system with space group P21/c, a=0.867 40(17), b=1.453 9(3), c=1.781 9(4) nm, β=91.18(3)°, V=2.246 7(8) nm3 and Z=2. The cobalt atom is in a distorted octahedral environment with two bidentate chelating L ligands in the equatorial plane and two NCS- ions in the axial positions. CCDC: 251658.  相似文献   

19.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

20.
The kinetics of axial water substitution by azoles (pyrazole and 1,2,4-triazole) in three different cobaloximes, viz.trans-[Co(Hdmg)(2)(R)H(2)O] where Hdmg = dimethylglyoximate, R = PhCH(2), Et and CF(3)CH(2), were studied as a function of azole concentration, temperature and pressure in aqueous solution. The second order rate constants for the substitution of water in trans-[Co(Hdmg)(2)(R)H(2)O] for R = Et at pH 6.0, 25 degrees C and I= 0.1 M (NaClO(4)), were found to be 1309 and 1200 M(-1) s(-1) for pyrazole (Pz) and 1,2,4-triazole (Tz), respectively, and those obtained for R = PhCH(2) were found to be 755 and 691 M(-1) s(-1), respectively. The second order rate constants in the case of R = CF(3)CH(2) were found to be 0.358 and 0.348 M(-1) s(-1) for Pz and Tz, respectively. The relative order of reactivity for the different alkyls being Et > PhCH(2) > CF(3)CH(2). The activation parameters (DeltaH([not equal]), DeltaS([not equal]) and DeltaV([not equal])) obtained for these reactions were found to be in the range of 65-87 kJ mol(-1), 24-47 J mol(-1) K(-1) and 2.5-7.7 cm(3) mol(-1), respectively. These data suggest that an I(d) substitution mechanism operates where the azoles participate in the transition state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号