首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoluminescence (T=5 K) and absorption (T=295 K) spectra and thermostimulated luminescence (T=5–300 K) curves of poly(methylphenyl)silane (PMPS) films are investigated as functions of the film thickness, annealing temperature, and oxygen content in air. It is revealed that the optical spectra and thermostimulated luminescence curves of PMPS films prepared in air at room temperature undergo changes after annealing at T=370–450 K. The assumption is made that the observed changes are associated with the formation of long polymer chain segments with a closer packing. This leads to an increase in the density of low-energy states of excitons and charge carriers. It is demonstrated that atmospheric oxygen substantially affects the formation processes and the energy disorder in the films prepared. The PMPS films are found to degrade after heating to T≥500 K.  相似文献   

2.
The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were determined. It is shown that the a=f(T), b=f(T), and c=f(T) curves exhibit anomalies in the form of jumps at phase transition temperatures T1=161 K and T2=181 K and that the phase transition occurring at T3=276 K manifests itself in the a=f(T) and b=f(T) curves as a break. A slight anisotropy in the coefficient of thermal expansion of the crystal was revealed. The phase transitions occurring at T1=161 K and T2=181 K in [N(CH3)4]2ZnCl4 were established to be first-order.  相似文献   

3.
The time dependence of scintillation intensity from single crystals ofp-terphenyl and mixed crystals ofp-terphenyl and anthracene after bombarding with α-particles was investigated at the two temperaturesT=296 °K andT=92 °K. For the crystals ofp-terphenyl the time dependence of the scintillation anisotropy was also measured. Using the formulas given byKing andVoltz the decay curves ofp-terphenyl were decomposed into two components. Good agreement between experiment and theory was found. The ratio of the prompt intensity to the delayed intensity was determined to be 1∶2 atT=296 °K and 1∶3 atT=92 °K. The diffusion constants for triplet excitons were calculated to beD T(296 °K)≈10?5 cm2 sec?1 andD T(92 °K)≈ 2×10?6 cm2 sec?1, and the triplet-triplet interaction rate constantsχ tt(296 °K)≈ 2.5×10?11 cm3 sec?1 andχ tt(92 °K)≈0.5×10?11 cm3 sec?1.  相似文献   

4.
The temperature dependence of the residual polarization of the nonergodic relaxation state (NERS) obtained from the measurements of pyroelectric current during zero-field heating (ZFH) in the temperature interval from 10 to 295 K is investigated for the Cd2Nb2O7 relaxation system in two cases: (1) after sample cooling in a constant electric field E (FC) from T = 295 K to a preset temperature, which is much lower than the “freezing” temperature of the relaxation state (T f ≈ 182 K), field removal, and subsequent cooling in zero field (ZFC) to T = 10 K and (2) after ZFC from T = 295 K to the same temperature below T f , application of the same field, and FC to T = 10 K. The behavior of the P r FC (T) and P r ZFC (T) dependences is analyzed. In the field E < 2 kV/cm, the P r ZFC curves as functions of 1/T have a broad low-intensity peak in the region TT f , which vanishes in stronger fields, when the P r FC (1/T) curves intersect at TT f and have no anomalies. The difference in the behavior of P r ZFC (T) and P r FC (T) indicates the difference in the nature of NERS formed during ZFC and FC of the system upon a transition through T f . In the ZFC mode, NERS exhibits glasslike behavior; in the FC regime, features of the ferroelectric behavior even in the weak field. Analogous variations of P r ZFC (T) and P r FC (T) in a classical ferroelectric KDP are also given for comparison.  相似文献   

5.
Glow curves of luminescence are recorded in the range from 10° K to 300° K. One gets characteristic changes by prior annealing the single crystals in O2 or HCl. Also an increase of the lattice disorder causes new glow bands. In KCl a strong glow band always appears at 40° K after irradiating with X-rays or ultraviolet light in the range of the exciton bands. It is ascribed to trapped excitons, which become mobile at that temperature. For X-ray irradiated KCl the glow curve of luminescence is compared with the electrical glow bands and with the concentration change of known defects. The half widthΔT of all glow bands is found proportional to the temperature of the maximum:ΔT=(0.08±0.02)T m .  相似文献   

6.
High-precision measurements of thermopower have been performed in a wide temperature range (2–300 K) for a series of cerium-based heavy-fermion compounds, including CeB6, CeAl3, CeCu6, and substitutional solid solutions of the CeCu6 ? x Au x system (x = 0.1, 0.2). All compounds exhibit an unusual (logarithmic) asymptotic behavior of the temperature dependence of the Seebeck coefficient: S ∝ ?lnT. In the case of cerium hexaboride, this anomalous behavior of S(T) is accompanied by the appearance of weak-carrier-localization-mode asymptotics in the conductivity (σ(T) ∝ T 0.39), while the paramagnetic susceptibility χ(T) and the effective mass of charge carriers m eff(T) vary according to a power law (χ(T), m eff(T) ∝ T ?0.8) in the temperature interval T = 10–80 K. This behavior corresponds to renormalization of the density of states at the Fermi level. The observed anomalous behavior of thermopower in CeB6 and other cerium-based intermetallic compounds is attributed to the formation of heavy fermions (many-body states in the metal matrix) at low temperatures.  相似文献   

7.
The study of galvanomagnetic, magnetic, and magnetooptical characteristics of iron monosilicide in a wide range of temperatures (1.8–40 K) and magnetic fields (up to 120 kOe) has revealed the origin of the low-temperature sign reversal of the Hall coefficient in FeSi. It is shown that this effect is associated with an increase in the amplitude of the anomalous component of the Hall resistance ρH (the amplitude increases by more than five orders of magnitude with decreasing temperature in the range 1.8–20 K). The emergence of the anomalous contribution to ρH is attributed to the transition from the spin-polaron to coherent regime of electron density fluctuations in the vicinity of Fe centers and to the formation of nanosize ferromagnetic regions, i.e., ferrons (about 10 Å in diameter), in the FeSi matrix at T<TC=15 K. An additional contribution to the Hall effect, which is observed near the temperature of sign reversal of ρH and is manifested as the second harmonic in the angular dependences ρH(?), cannot be explained in the framework of traditional phenomenological models. Analysis of magnetoresistance of FeSi in the spin-polaron and coherent spin fluctuation modes shows that the sign reversal of the ratio Δρ(H)/ρ accompanied by a transition from a positive (Δρ /ρ>0, T>Tm) to a negative (Δρ/ρ<0, T<Tm) magnetoresistance is observed in the immediate vicinity of the mictomagnetic phase boundary at Tm=7 K. The linear asymptotic form of the negative magnetoresistance Δρ/ρ ∝?H in weak magnetic fields up to 10 kOe is explained by the formation of magnetic nanoclusters from interacting ferrons in the mictomagnetic phase of FeSi at T<Tm. The results are used for constructing for the first time the low-temperature magnetic phase diagram of FeSi. The effects of exchange enhancement are estimated quantitatively and the effective parameters characterizing the electron subsystem in the paramagnetic (T>TC), ferromagnetic (Tm<T< TC), and mictomagnetic (T<Tm) phases are determined. Analysis of anomalies in the aggregate of transport, magnetic, and magnetooptical characteristics observed in the vicinity of Hm≈35 kOe at T<Tm leads to the conclusion that a new collinear magnetic phase with MH exists on the low-temperature phase diagram of iron monosilicide.  相似文献   

8.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

9.
Thermal expansion and its anomalies in the vicinity of spin-reorientation phase transitions in single crystals of RFe11Ti (R=Y, Tb, Dy, Ho, and Er) compounds are investigated by the tensometric technique in the temperature range 77–400 K. The temperature dependences of the thermal expansion coefficient α(T) are obtained. It is found that the YFe11Ti and HoFe11Ti uniaxial magnetic materials exhibit pronounced anomalies in the α coefficient at T=200 and 290 K. For the TbFe11Ti single crystal, the α coefficient is close to zero in the vicinity of the spin-reorientation phase transition (at T=325 K). For the DyFe11Ti single crystal, which is characterized by two spin-reorientation phase transitions (at T=120 and 250 K), no features in the α(T) dependence are revealed in the region of the low-temperature spin-reorientation phase transition. In the ErFe11Ti single crystal, the specific feature of thermal expansion is observed at T ~ 220 K.  相似文献   

10.
We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose–Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of Hc2(T), especially at low temperatures. In BEC limit and in the region of BCS–BEC crossover Hc2(T), dependence becomes practically linear. Disordering also leads to the general growth of Hc2(T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of Hc2(T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of Hc2(T) at low temperatures, so that the Hc2(T) dependence becomes concave. In BCS–BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region Hc2 (T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase Hc2 (T = 0) also making Hc2(T) dependence concave.  相似文献   

11.
We report on measurements of the temperature dependence of resistivity, ρ(T), for single-crystal samples of ZrB12, ZrB2, and polycrystalline samples of MgB2. It is shown that the cluster compound ZrB12 behaves as a simple metal in the normal state, with a typical Bloch-Grüneisen ρ(T) dependence. However, the resistive Debye temperature, TR=300 K, is three times smaller than TD obtained from specific heat data. We observe the T2 term in ρ(T) of all these borides, which could be interpreted as an indication of strong electron-electron interaction.  相似文献   

12.
The temperature dependences of the molar heat capacity at constant pressure, Cp, of Pb5(Ge1?xSix)3O11 crystals with x=0, 0.39, and 0.45 in the range 5–300 K, as well as of their permittivity, dielectric losses, and the pyroelectric effect, have been measured. Experimental data on the temperature behavior of the heat capacity are presented in the form of a sum of two Debye and one Einstein terms, Cp(T)=0.405CD1D1=160 K, T)+0.53CD2D2=750 K, T)+0.046CEE=47 K, T). Besides a peak in the region of the ferroelectric Curie point Tc=450 K for crystals with x=0, the temperature dependences of the heat capacity did not reveal any other pronounced anomalies.  相似文献   

13.
The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T ? T c . The fractal dimension of iso-potential lines (D f ), the exponent of the distribution function of the gyration radius (τ r ), and the loop lengths (τ l ), and also the exponent of the loop Green function x l change in terms of T ? T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f (T) ? D f (T c ) ~ 1/√ξ(T), in which ξ(T) is the spin correlation length in the Ising model.  相似文献   

14.
The effect of neutron-bombardment-induced atomic disorder on the galvanomagnetic properties of Sr2RuO4 single crystals has been experimentally studied in a broad range of temperatures (1.7–380 K) and magnetic fields (up to 13.6 T). The disorder leads to the appearance of negative temperature coefficients for both the in-plane electric resistivity (ρa) and that along the c axis (ρc), as well as the negative magnetoresistance Δρ, which is strongly anisotropic to the magnetic field orientation (Ha and Hc), with the easy magnetization direction along the c axis and a weak dependence on the probing current direction in the low-temperature region. The experimental ρa(T) and ρc(T) curves obtained for the initial and radiation-disordered samples can be described within the framework of a theoretical model with two conductivity channels. The first channel corresponds to the charge carriers with increased effective masses (~10m e , where m e is the electron mass) and predominantly electron-electron scattering, which leads to the quadratic temperature dependences of ρa and ρc. The second channel corresponds to the charge carriers with lower effective masses exhibiting magnetic scattering at low temperatures, which leads to the temperature dependence of the ρa, c(T) ∝ 1/T type.  相似文献   

15.
Resistivity (ρ), thermal conductivity (k) and Seebeck coefficient (S) of La1–xCexB6 single crystals with various concentrations of cerium Ce ions was measured in a wide temperature range 3?300 K. The obtained data were analyzed in the framework of the Coqblin–Shrieffer model. The contributions of scattering of carriers on magnetic ions Ce for all transport parameters ρ(T), k(T), S(T) are revealed. Strong dependence of the magnetic scattering on concentration of the cerium ions are identified. The anomalous behavior of the transport parameters ρ(T), k(T), S(T) in the region near 30 K is attributed to the Δ ~ 30 K splitting of Г8 level.  相似文献   

16.
Temperature dependences of dielectric permittivity in the improper ferroelastic phase, including the region of the improper ferroelastic phase transition occurring at T=Tc1, were studied in the betaine phosphite-betaine phosphate solid-solution crystals. At a betaine phosphate (BP) concentration of 10%, the phase transition temperature Tc1 was found to shift toward higher temperatures by about 5 K compared to betaine phosphite (BPI) crystals, where Tc1=355 K. The phase transition remains in the vicinity of the tricritical point. As the BP concentration in BPI is increased, the dielectric anomaly at T=Tc1 weakens substantially compared to pure BPI. The nonlinear temperature dependence of reciprocal dielectric permittivity in the improper ferroelastic phase of BPIxBP1?x crystals is described in the concentration region 0.9≤x≤1 in terms of a thermodynamic model taking into account the biquadratic relation of the nonpolar order parameter of the improper ferroelastic phase transition to polarization. The decrease in the ferroelectric phase transition temperature Tc1 (or in the temperature of loss of improper ferroelastic phase stability) with increasing BP concentration in the above limits is due to the decreasing effect of the nonpolar mode on the polar instability, which is accompanied by a weakening of the dielectric anomaly at T=Tc1  相似文献   

17.
The behavior in a magnetic field of a highly correlated electron liquid approaching the fermion condensation quantum phase transition from the disordered phase is considered. We show that, at sufficiently high temperatures TT*(x), the effective mass starts to depend on T, M* ∝T?1/2. This T?1/2 dependence of the effective mass at elevated temperatures leads to the non-Fermi liquid behavior of the resistivity, σ(T) ∝ T and at higher temperatures σ(T) ∝ T3/2. The application of a magnetic field B restores the common T2 behavior of the resistivity. The effective mass depends on the magnetic field, M*(B) ∝ B?2/3, being approximately independent of the temperature at T≤T*(B) ∝ B4/3. At TT*(B), the T?1/2 dependence of the effective mass is reestablished. We demonstrate that this B-T phase diagram has a strong impact on the magnetoresistance (MR) of the highly correlated electron liquid. The MR as a function of the temperature exhibits a transition from negative values of MR at T→0 to positive values at TB4/3. Thus, at TT*(B), MR as a function of the temperature possesses a node at TB4/3.  相似文献   

18.
Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed “globally optimal” point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel–Fulcher–Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315–5 K. We also verified that for the coefficient of thermal expansion α P (T, P), the isobaric α P (T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T < T*, hydrogen bonds persist longer than nearest neighbors, suggesting that the hydrogen bonding network dominates the water structure at T < T*, whereas for T > T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.  相似文献   

19.
By studying the magnetic and magnetoelastic properties, it is established that, as the temperature is lowered, Sm1?xSrxMnO3 single crystals (x=0.5, 0.55) undergo spontaneous phase transitions from the paramagnetic to a local charge-ordered state at Tco=220 K and to an A-type antiferromagnetic state at TN=175 K. It is shown that strong magnetic fields (Hcr ~ 200 kOe) break up the antiferromagnetic order and charge ordering and drive a phase transition to a conducting ferromagnetic state. H-T phase diagrams are constructed for single crystals with x=0.5 and 0.55.  相似文献   

20.
The thermopower, S, magnetothermopower, ΔS/S, resistivity, ρ, and magnetoresistivity, Δρ/ρ, depending on the temperature T and magnetic field H, have been studied in an Nd0.5Sr0.5MnO3 single crystal consisting of three types of clusters: an antiferromagnetic CE-type with charge-orbital ordering (below the Neel temperature TNCE ~ 145 K) and an A-type with TNA ~ 220 K; a ferromagnetic at 234 ≤ T ≤ 252 K, and a ferromagnetic metal phase below the Curie temperature TC = 248 K. The thermopower was found to be negative, indicating the dominance of the electronic type of conductivity. In the S(T) curves, a sharp minimum is observed in the temperature range of 100 K ≤ T ≤ 133 K, close to TNCE, where the absolute S value attains 53 μV/K. With a further increase in temperature, the absolute S value decreases rapidly; at 200 K it is equal to 7 μV/K. It then slightly increases, reaching its maximum value of 15 μV/K at a temperature of 254 K, which is close to TC. The absolute thermopower decreased under the influence of the magnetic field; i.e., a negative magnetothermopower occurs. In {ΔS/S}(T) curves, a sharp minimum is observed at T = 130 K close to TNCE, where the magnetothermopower reaches a huge value of ~45% at H = 13.23 kOe. A broad minimum in the {ΔS/S}(T) curves is observed near the Curie temperature and its value is also high, viz., ~15% in the maximum measuring magnetic field of 13.23 kOe. The extremely high magnetothermopower values mean that the charge-orbital ordered nanoclusters or ferron type make the main contribution to the thermopower of the entire sample. The behavior of the ρ(T) and {Δρ/ρ}(T) curves is similar to that of the S(T) and {ΔS/S}(T) dependencies, which is in agreement with this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号