共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
采用管式炉及Hg在线分析仪,初步探讨了空气和O2/CO2气氛中,煤中汞的动态释放过程.发现Hg的析出呈双峰分布:空气气氛下,双峰分别出现在350℃和450℃附近;O2/CO2气氛下Hg析出温度升高,双峰分别出现在略高于350℃和500℃附近;烟气中单质汞浓度升高;两种气氛下,Hg的第二个峰紧邻在稍高温度出现的SO2析出峰,考虑煤中Hg的赋存形态,结合煤的形态硫分析结果,初步推测第一个峰对应有机结合的Hg,第二个峰对应与黄铁矿结合的Hg,且O2/CO2气氛对黄铁矿的分解存在一定影响. 相似文献
5.
6.
7.
本文选取两种贵州高汞煤,在200~800℃的温度范围内,采用程序升温反应系统加热,利用美国EPA推荐的Ontario-Hydro方法捕捉不同形态汞。研究了在N2气氛和微氧化性气氛下温和热解过程中汞的释放和形态分布规律。实验结果表明:温度是影响煤温和热解过程中汞释放的主要因素,煤中汞释放率随着温度的升高而明显升高,当热解温度为600℃时,汞释放率可达90%左右。在微氧化性气氛下,汞的释放率随着氧气体积分数的升高而增大。元素汞(Hg0)是气态汞释放的主要形态,热解停留时间及热解气氛对气态汞的释放形态也存在影响较大。 相似文献
8.
微波消解-冷原子荧光法测定煤中痕量汞 总被引:17,自引:0,他引:17
微波消解技术具有样品溶解完全、污染少、节约试剂和方便快捷等特点。文章采用微波消解预处理煤样 ,并用冷原子荧光法测定样品中的痕量汞。采用硝酸 盐酸 氢氟酸消解体系 ,进行了微波消解条件的选择 ,并考察了载气流量、屏蔽气流量、负高压和干扰等对测定的影响。在选定的操作条件下 ,汞的检出限为0 0 3ng·mL-1,相对标准偏差 (n =7)小于 5 %。方法准确、快速和方便 ,利用国家标准参考物质煤飞灰GBW 0 84 0 1验证了方法的准确度 ,测定值与参考值基本吻合 相似文献
9.
10.
煤燃烧中无机矿物向颗粒物的转化规律 总被引:1,自引:0,他引:1
为深入理解燃煤颗粒物的形成机理,利用计算机控制扫描电镜技术对煤及其颗粒物中的无机矿物进行了详细表征,研究了煤燃烧过程中主要矿物向颗粒物的转化规律.结果表明煤中粘土矿物由于含有K、Na、Ca、Mg和Fe等杂质元素,容易在较低温度下发生熔融和聚合,从而使颗粒粒径变大.黄铁矿在燃烧中易发生分解、破碎而使颗粒粒径减小,Fe氧化物与硅酸盐发生反应形成富Fe硅酸盐.方解石和铁白云石在高温条件下分解生成对应的氧化物,也可与硅酸盐发生反应形成富Ca或富Fe硅酸盐.石膏在燃烧过程中会经历脱水和分解反应,生成的CaO可与SO3和熔融硅酸盐发生竞争反应. 相似文献
11.
燃煤含铁矿物的迁移转化特性研究 总被引:2,自引:1,他引:2
采用场发射扫描电镜结合X射线能谱分析仪(FSEM-EDX)系统研究了燃煤电站静电除尘器下各电场飞灰中磁珠的显微结构和化学组成,并利用热力学软件FACT计算预测了煤中含铁矿物的迁移转化过程.结果表明,外在含铁矿物在燃煤过程中易直接氧化形成结晶程度较好的铁氧化物相;内在含铁矿物与其他矿物在高温下熔合形成含Fe、Al、 Si的复杂的玻璃相,煤中含铁矿物的赋存特征、反应温度和气氛是影响含铁矿物迁移转化的主要因素。燃煤过程中Fe2 中间产物的形成以及Fe-O-S共熔体在炉内的长时间停留是结渣形成的重要原因。 相似文献
12.
13.
由于痕量元素在煤中的含量低微、检测困难,加之其原子量一般较大,可能的反应途径多,使得相关的反应机理研究难度极大。本文结合作者的研究成果,介绍了煤燃烧过程中痕量元素化学反应动力学的国内外研究进展,包括痕量元素化学动力学机理的建立;相关的典型实验、计算模拟及其实验验证、动力学机理模型的简化;痕量元素反应动力学机理的完善和发展,包括采用简单碰撞理论、活化络合物理论(亦称过渡态理论,或绝对反应速率理论)对痕量元素化学反应动力学机理的修正;最后指出煤燃烧过程中痕量元素动力学研究的若干方向是: (1)痕量元素反应动力学模型数据库的建立;(2)煤燃烧过程中,主量元素和次量元素的动力学机理的完善; (3)各痕量元素之间动力学研究的开展; (4)实际燃烧过程中痕量元素动力学行为的研究。 相似文献
14.
燃煤超细颗粒团聚模拟研究 总被引:4,自引:0,他引:4
针对煤燃烧过程中产生的超细颗粒有效控制问题,提出了一种配合中国目前电站除尘方式的新方法,其核心思想就是将一种表面具有较高粘附活性的团聚剂溶液喷入烟气中,使烟气中超细颗粒物团聚成较大颗粒物后能够被电站现有除尘装置所除去。为了证明这种方法的有效性,建立了模拟锅炉烟尘流动的小型团聚实验台并进行实验研究;在此基础上,模拟了团聚剂对超细颗粒物的团聚效果,计算结果表明:烟气流量、烟尘浓度、团聚剂流量和浓度等都是影响超细颗粒物团聚的重要因素;若保证烟气温度降低幅度在10℃以内,且烟气流量和烟尘浓度相同时,适当增加团聚剂的浓度或流量,可使超细颗粒物的团聚效率达到70%,为进一步实验研究提供理论依据。 相似文献
15.
16.