首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An infinite or semi-infinite jet of non-conductive magnetic liquid in a uniform longitudinal magnetic field can be absolutely or convectively unstable for different values of the flow parameters. Though the higher field inhibits the absolute instability, this inhibition is maximum at some field intensity. A critical value of the surface tension exists, above which the instability is absolute for any intensity of the field. If the jet has a large but finite length and proper boundary conditions are held at its beginning and end, it is always globally unstable. The unstable global mode is based on a pair of waves that propagate in opposite directions and reflect from one into the other at the flow boundaries.  相似文献   

2.
The instability of circular liquid jet immersed in a coflowing high velocity air stream is studied assuming that the flow of the viscous gas and liquid is irrotational. The basic velocity profiles are uniform and different. The instabilities are driven by Kelvin–Helmholtz instability due to a velocity difference and neckdown due to capillary instability. Capillary instabilities dominate for large Weber numbers. Kelvin–Helmholtz instability dominates for small Weber numbers. The wavelength for the most unstable wave decreases strongly with the Mach number and attains a very small minimum when the Mach number is somewhat larger than one. The peak growth rates are attained for axisymmetric disturbances (n = 0) when the viscosity of the liquid is not too large. The peak growth rates for the first asymmetric mode (n = 1) and the associated wavelength are very close to the n = 0 mode; the peak growth rate for n = 1 modes exceeds n = 0 when the viscosity of the liquid jet is large. The effects of viscosity on the irrotational instabilities are very strong. The analysis predicts that breakup fragments of liquids in high speed air streams may be exceedingly small, especially in the transonic range of Mach numbers.  相似文献   

3.
The shape of a charged jet is determined in the approximation of a strong electric field. The stability of the jet with respect to both axisymmetric and nonaxisymmetric perturbations of the sinusoidal type is investigated in the linear approximation. The domains of predominance of the axisymmetric and bending modes and the longitudinal partition mode are determined. Experimental data on the longitudinal partition of a polymeric jet into several daughter jets are given.  相似文献   

4.
The aim of this study is to investigate the effect of a uniform transverse electric field on the steady-state behavior of a liquid cylinder surrounded by another liquid of infinite extent. The governing electrohydrodynamic equations are solved for Newtonian and immiscible fluids in the framework of leaky-dielectric theory and in the limit of small electric field and fluid inertia. A detailed analysis of the electrical and hydrodynamic stresses acting on the interface separating the two fluids is presented, and an expression is found for the interface deformation for small distortions from a circular shape. The electrical stresses acting on the interface of two leaky-dielectric liquids are compared with those acting on an interface separating a perfect dielectric or infinitely conducting core fluid cylinder from a surrounding perfect dielectric fluid. A comparison is made between the results of this study and those of a similar study for fluids with permeable interfaces and the classical results for liquid drops.  相似文献   

5.
Dehai Luo 《Wave Motion》2001,33(4):339-347
In the paper, with the help of a perturbation expansion method a new higher order nonlinear Schrödinger (HNLS) equation is derived to describe nonlinear modulated Rossby waves in the geophysical fluid. Using this equation, the modulational wave trains are discussed. It is found that the higher order terms favor the instability growth of modulational disturbances superimposed on uniform Rossby wave trains, but the instability region becomes narrower. In addition, the latitude and uniform background basic flow are found to affect the instability growth rate and instability region of uniform Rossby wave train. However, for a geostrophic flow the background basic flow does not affect the modulational instability of uniform Rossby wave train.  相似文献   

6.
Stability of a liquid (electrolyte) jet in a tangential electric field harmonically oscillating with a high frequency is considered under an assumption of an ideal liquid. It is demonstrated that it is possible to solve the electrodynamic and hydrodynamic parts of the problem inside the jet separately if the Peclet number based on the Debye layer thickness is small. Linear stability of the trivial solution of the problem is studied. A dispersion relation is derived, which is used to study the effect of the amplitude and frequency of electric field oscillations on jet stability. An increase in the amplitude of oscillations is demonstrated to exert a stabilizing effect, whereas an increase in frequency leads to insignificant destabilization of the jet.  相似文献   

7.
The stability of a liquid electrolyte placed in a tangential electric field oscillating harmonically at high frequency is considered assuming that the liquid is viscous and Newtonian. It is shown that, if the Peclet number calculated from the thickness of the Debye layer is small, the problem can be solved separately for the electrodynamic part of the problem in the Debye layer and for the hydrodynamic part of the problem in the jet. The linear stability of the trivial solution of the problem is investigated. A dispersion relation is derived and used to study the effect of the amplitude and frequency of electric field oscillations on the stability of the jet. It is shown that the presence of the external oscillating field has a stabilizing effect on the jet. The basic stability regimes as functions of the control parameters of the problem and bifurcation changes in the regimes are investigated.  相似文献   

8.
9.
A numerical prediction is obtained for the mean pressure field in the similarity region of a plane turbulent jet. An algebraic stress model, which introduces non-isotropic relations for the Reynolds stress components, is used to close the mean momentum equation. The full two-dimensional form of the transport equations is retained and the resultant equation set solved elliptically. The numerical prediction simulates many of the characteristics of the pressure field measured by experimental studies. However, the overall level of the predicted field is lower than the experimental values. The level obtained for the mean pressure field depends strongly on the prediction for the transverse normal Reynolds stress component 〈u2u2〉. The pressure field is shown to represent a small negative contribution to the net strearnwise momentum balance.  相似文献   

10.
In the past, when either the perturbation‐type method or direct‐simulation approach was used to analyse capillary jets, the governing equations, which are parabolic in time and elliptic in space, were simplified or linearized. In the present study, the convective derivative term and a full, nonlinear form of the capillary pressure term are retained in the governing equations to investigate nonlinear effects on the break‐up of capillary jets. In this work, the TVD (i.e. total variation diminishing) scheme with flux‐vector splitting is applied to obtain the solutions of the system of nonlinear equations in a matrix form. Numerical results show that the present nonlinear model predicts longer jet break‐up lengths and slower growth rates for capillary jets than the previous linear model does. Comparing with other measurements from past literatures, the nonlinear results are consistent with the experimental data and appear more accurate than the linear analysis. In the past, the classic perturbation‐type analyses assumed constant growth rates for the fundamental and all harmonic components. By contrast, the present model is able to capture the local features of growth rates, which are not spatially and temporally constant. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The nonlinear deformation and atomization of a rotating column is considered using an axisymmetric boundary element formulation. Swirl has been considered by superposing a potential vortex to the bulk flow of the jet. The resulting model has been shown to reproduce the classical linear result due to Ponstein and parametric studies are conducted in the nonlinear regime to determine wave shapes and droplet sizes. As with prior nonlinear column breakup studies, results indicate that satellite drops are formed from the main wave under virtually all conditions. The ratio of the main drop to satellite drop diameter is shown to be remarkably constant over a variety of wave numbers/column lengths thereby providing a potential approach to produce tightly controlled bimodal sprays.  相似文献   

12.
The parametric instability of a nonuniformly heated horizontal layer of liquid dielectric with free isothermal boundaries in a transverse electric field is studied analytically. An instability map is obtained. It is shown that instability can develop at some critical electric field strength which depends on the frequency and is several times greater than the critical strength of the constant electric field.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 184–186, September–October, 1993.  相似文献   

13.
A method of theoretical investigation of the flow field in a two-dimensional (plane-parallel or axisymmetric) overexpanded jet of an ideal perfect gas in the vicinity of the nozzle lip is described. The changes in curvature of the shock wave emanating from the lip, as well as the shock-wave intensity and flow parameters behind the shock are analyzed as functions of the Mach number, pressure ratio in the plane jet, and ratio of specific heats of the gas. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 72–83, May–June, 2006.  相似文献   

14.
The steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field is analyzed. The equations governing the flow and concentration field are reduced to a system of coupled non-linear ordinary differential equations. These non-linear differential equations are solved numerically by using the shooting method. The numerical results for the concentration field are presented through graphs.  相似文献   

15.
The effect of a uniform electromagnetic field on the stability of a thin layer of an electrically conducting viscoelastic liquid flowing down on a nonconducting inclined plane is studied under the induction-free approximation. Long-wave expansion method is used to obtain the surface evolution equation. The stabilizing role of the magnetic parameter M and the destabilizing role of the viscoelastic parameter Γ as well as the electric parameter E on this flow field are established. A novel result which emerges from our analysis is that the stabilizing effect of M holds no longer true for both viscous and viscoelastic fluids in the presence of electromagnetic field. It is found that when E exceeds a certain critical value depending on Γ, magnetic field exhibits the destabilizing effect on this flow field. Indeed, this critical value decreases with the increase of the viscoelastic parameter Γ since it has a destabilizing effect inherently. Another noteworthy result which arises from the weakly nonlinear stability analysis is that both the subcritical unstable and supercritical stable zones are possible together with the unconditional stable and explosive zones for different values of Γ depending on the wave number k.  相似文献   

16.
It has long been known that the presence of surfactants on the free surface of a liquid jet can create surface tension gradients along the interface. The resulting formation of tangential stresses along the surface lead to Marangoni type flows and greatly affect the resulting dynamics of rupture. In this way surfactants can be used to manipulate the breakup of a liquid jet and control the size of droplets produced. In this paper we investigate the effects of insoluble surfactants on the breakup of rotating liquid jets with applications to industrial prilling. Using a long wavelength approximation we reduce the governing equations into a set of one-dimensional equations. We use an asymptotic theory to find steady solutions and then carry out a linear instability analysis on these solutions. We show that steady state centreline solutions are independent of viscosity to leading order and that the most unstable wavenumber and growth rate of disturbances decrease as the effectiveness of surfactants is increased. We also numerically solve these equations using a finite difference scheme to investigate the effects of changing the initial surfactant concentration and other fluid parameters. Our results show that differences in breakup lengths between rotating surfactant-laden jets and surfactant-free jets increase with the rate of rotation. Moreover, we find that satellite droplet sizes decrease as the rate of rotation is decreased with the effect of surfactants amplifying the reduction in sizes. Furthermore, the presence of surfactants at fixed rotation rates is shown to produce larger main droplets at low disturbance wavenumbers whilst satellite droplets are smaller for moderate disturbance wavenumbers κ≈0.7.  相似文献   

17.
The effect of capillarity and a surfactant on the stability of a liquid layer in the presence of a vertical temperature gradient is investigated. It is found that the surfactant leads to the appearance of both monotonic and oscillatory instability, the presence of a surface concentration destabilizing the equilibrium in the case of heating from below. When the free surface is heated, the surfactant stabilizes the capillary instability.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.1, pp. 6–10, January–February, 1993.  相似文献   

18.
The effect of capillarity on the stability of a plane layer of viscous heat-conducting liquid in the presence of a soluble surfactant is investigated. It is found that an increase in surfactant solubility has a stabilizing effect on equilibrium. Monotonic instability is the most dangerous mode in the case of long-wave perturbations, whereas in the short-wave region loss of stability is induced by oscillatory perturbations.Krasnoyarsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 3–8, January–February, 1996.  相似文献   

19.
The effect of an electric field on the buoyancy-driven motion of a two-dimensional gas bubble rising through a quiescent liquid is studied computationally. The dynamics of the bubble is simulated numerically by tracking the gas–liquid interface when an electrostatic field is generated in the vertical gap of the rectangular enclosure. The two phases of the system are assumed to be perfect dielectrics with constant but different permittivities, and in the absence of impressed charges, there is no free charge in the fluid bulk regions or at the interface. Electric stresses are supported at the bubble interface but absent in the bulk and one of the objectives of our computations is to quantify the effect of these Maxwell stresses on the overall bubble dynamics. The numerical algorithm to solve the free-boundary problem relies on the level-set technique coupled with a finite-volume discretization of the Navier–Stokes equations. The sharp interface is numerically approximated by a finite-thickness transition zone over which the material properties vary smoothly, and surface tension and electric field effects are accounted for by employing a continuous surface force approach. A multi-grid solver is applied to the Poisson equation describing the pressure field and the Laplace equation governing the electric field potential. Computational results are presented that address the combined effects of viscosity, surface tension, and electric fields on the dynamics of the bubble motion as a function of the Reynolds number, gravitational Bond number, electric Bond number, density ratio, and viscosity ratio. It is established through extensive computations that the presence of the electric field can have an important effect on the dynamics. We present results that show a substantial increase in the bubble’s rise velocity in the electrified system as compared with the corresponding non-electrified one. In addition, for the electrified system, the bubble shape deformations and oscillations are smaller, and there is a reduction in the propensity of the bubble to break up through increasingly larger oscillations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号