首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reported here is the first μSR study of the muon (A(μ)) and proton (A(p)) β-hyperfine coupling constants (Hfcc) of muoniated sec-butyl radicals, formed by muonium (Mu) addition to 1-butene and to cis- and trans-2-butene. The data are compared with in vacuo spin-unrestricted MP2 and hybrid DFT/B3YLP calculations reported in the previous paper (I), which played an important part in the interpretation of the data. The T-dependences of both the (reduced) muon, A(μ)′(T), and proton, A(p)(T), Hfcc are surprisingly well explained by a simple model, in which the calculated Hfcc from paper I at energy minima of 0 and near ±120° are thermally averaged, assuming an energy dependence given by a basic 2-fold torsional potential. Fitted torsional barriers to A(μ)′(T) from this model are similar (~3 kJ/mol) for all muoniated butyl radicals, suggesting that these are dominated by ZPE effects arising from the C?Mu bond, but for A(p)(T) exhibit wide variations depending on environment. For the cis- and trans-2-butyl radicals formed from 2-butene, A(μ)′(T) exhibits clear discontinuities at bulk butene melting points, evidence for molecular interactions enhancing these muon Hfcc in the environment of the solid state, similar to that found in earlier reports for muoniated tert-butyl. In contrast, for Mu?sec-butyl formed from 1-butene, there is no such discontinuity. The muon hfcc for the trans-2-butyl radical are seemingly very well predicted by B3LYP calculations in the solid phase, but for sec-butyl from 1-butene, showing the absence of further interactions, much better agreement is found with the MP2 calculations across the whole temperature range. Examples of large proton Hfcc near 0 K are also reported, due to eclipsed C?H bonds, in like manner to C?Mu, which then also exhibit clear discontinuities in A(p)(T) at bulk melting points. The data suggest that the good agreement found between theory and experiment from the B3LYP calculations for eclipsed bonds in the solid phase may be fortuitous. For the staggered protons of the sec-butyl radicals formed, no discontinuities are seen at all in A(p)(T), also demonstrating no further effects of molecular interactions on these particular proton Hfcc.  相似文献   

2.
The possible radicals resulting from hydrogen atom addition to the imidazole rings of 1,3-bis(isopropyl)-4,5-dimethylimidazol-2-ylidene (1) and 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (2) have been studied by means of density functional calculations (B3LYP). The calculations included solvent effects estimated via the polarized continuum model (PCM) and an empirical treatment of vibrational averaging of hyperfine constants. Addition of a hydrogen (or muonium) atom to the carbeneic carbon of 1,3-bis(isopropyl)-4,5-dimethylimidazol-2-ylidene was found to give a radical 60.46 kJ mol(-)(1) more stable than the radical resulting from addition to the double bond. Estimation of the activation barriers for reaction at the two sites shows that addition at the carbeneic carbon is favored. The site of addition was confirmed experimentally using muonium (Mu), which can be considered a light isotope of hydrogen. Muon spin rotation and muon level-crossing spectroscopy were used to determine muon, (13)C, and (14)N hyperfine coupling constants (hfc's) for the radical products of addition to the two carbenes. Good agreement between the experimental and calculated hfc's confirms that Mu (and hence H) adds exclusively to the carbeneic carbon. The radicals that are produced have nonplanar radical centers with most of the unpaired electron spin density localized on the alpha-carbon.  相似文献   

3.
Muonium (Mu), an H atom analogue, is employed to probe the addition of free radicals to the P=C bond of a phosphaalkene. Specifically, two unprecedented muoniated free radicals, MesP.?CMu(Me)2 ( 1 a , minor product) and MesPMu?C.Me2 ( 1 b , major product), were detected by muon spin spectroscopy (μSR) when a solution of MesP=CMe2 ( 1 : Mes=2,4,6‐trimethylphenyl) was exposed to a beam of positive muons (μ+). The μ+ serves as a source of Mu (that is, Mu=μ++e?). To confirm the identity of the major product 1 b , its spectral features were compared to its isotopologue, MesPH‐C.(Me)CH2Mu ( 2 a ). Conveniently, 2 a is the sole product of the reaction of MesPH(CMe=CH2) ( 2 ) with Mu. For all observed radicals, muon, proton, and phosphorus hyperfine coupling constants were determined by μSR and compared to DFT‐calculated values.  相似文献   

4.
The hyperfine coupling constants (HFCCs) of all the butyl radicals that can be produced by muonium (Mu) addition to butene isomers (1- and 2-butene and isobutene) have been calculated, to compare with the experimental results for the muon and proton HFFCs for these radicals reported in paper II (Fleming, D. G.; et al. J. Phys. Chem. A 2011, 10.1021/jp109676b) that follows. The equilibrium geometries and HFCCs of these muoniated butyl radicals as well as their unsubstituted isotopomers were treated at both the spin-unrestricted MP2/EPR-III and B3LYP/EPR-III levels of theory. Comparisons with calculations carried out for the EPR-II basis set have also been made. All calculations were carried out in vacuo at 0 K only. A C-Mu bond elongation scheme that lengthens the equilibrium C-H bond by a factor of 1.076, on the basis of recent quantum calculations of the muon HFCCs of the ethyl radical, has been exploited to determine the vibrationally corrected muon HFCCs. The sensitivity of the results to small variations around this scale factor was also investigated. The computational methodology employed was "benchmarked" in comparisons with the ethyl radical, both with higher level calculations and with experiment. For the β-HFCCs of interest, compared to B3LYP, the MP2 calculations agree better with higher level theories and with experiment in the case of the eclipsed C-Mu bond and are generally deemed to be more reliable in predicting the equilibrium conformations and muon HFCCs near 0 K, in the absence of environmental effects. In some cases though, the experimental results in paper II demonstrate that environmental effects enhance the muon HFCC in the solid phase, where much better agreement with the experimental muon HFCCs near 0 K is found from B3LYP than from MP2. This seemingly better level of agreement is probably fortuitous, due to error cancellations in the DFT calculations, which appear to mimic these environmental effects. For the staggered proton HFCCs of the butyl radicals exhibiting no environmental effect in paper II, the best agreement with experiment is consistently found from the B3LYP calculations, in agreement also with benchmark calculations carried out for the ethyl radical.  相似文献   

5.
New evidence is presented for the observation of a muoniated radical in the Mu + Br(2) system, from μSR longitudinal field (LF) repolarisation studies in the gas phase, at Br(2) concentrations of 0.1 bar in a Br(2)/N(2) mixture at 300 K and at 10 bar total pressure. The LF repolarisation curve, up to a field of 4.5 kG, reveals two paramagnetic components, one for the Mu atom, formed promptly during the slowing-down process of the positive muon, with a known Mu hyperfine coupling constant (hfcc) of 4463 MHz, and one for a muoniated radical formed by fast Mu addition. From model fits to the Br(2)/N(2) data, the radical component is found to have an unusually high muon hfcc, assessed to be ~3300 MHz with an overall error due to systematics expected to exceed 10%. This high muon hfcc is taken as evidence for the observation of either the Br-Mu-Br radical, and hence of vibrational bonding in this H[combining low line]-L[combining low line]-H[combining low line] system, or of a MuBr(2) van der Waals complex formed in the entrance channel. Preliminary ab initio electronic structure calculations suggest the latter is more likely but fully rigorous calculations of the effect of dynamics on the hfcc for either system have yet to be carried out.  相似文献   

6.
Muoniated radicals were produced by the addition of muonium (Mu) to the aromatic compound p-xylene (1) in the solid and liquid states and to the strained aromatic compound [2.2]paracyclophane (2) in the solid state. The radicals were characterized by avoided level crossing muon spin resonance spectroscopy and identified by comparing the experimentally determined muon hyperfine coupling constants with values obtained from DFT calculations. Mu was observed to add to both the secondary and tertiary carbons of 1, with the relative yield of the Mu adduct of the tertiary carbons estimated to be ~10% in the liquid phase. The relative yield of the tertiary adduct is much higher in the solid state although this cannot be calculated exactly due to the overlap of resonances and the apparent nonuniform distribution of the radical orientations. There are three possible addition sites in 2 due to the lower symmetry of the six-membered ring compared with 1. Mu can add to the secondary carbons either from the outside of 2, generating the "exo" adduct, or from the inside, generating the "endo" adduct. The relative yields of the exo, endo, and tertiary carbon adducts are 67.1(1), 21.8(1), and 11.1(1)%, respectively. The barriers to Mu addition at the different sites of isolated molecules were determined from DFT calculations. The barriers for Mu addition to 2 are lower than the barriers for Mu addition to 1, except for addition to the "endo" position, where the unfavorable steric interactions with the second ring of 2 raise the addition barrier considerably. The measured relative yields do not reflect the distribution of products calculated using the activation energies obtained from the DFT calculations due to strong steric interactions with neighboring molecules.  相似文献   

7.
There is a pressing need to identify and monitor reaction intermediates in water at high temperatures and pressures, but conventional techniques have limited capability for studying transient free radicals under such challenging conditions. Apparatus has now been developed to permit muon avoided-level crossing spectroscopy (muLCR) of organic free radicals in superheated water. The combination of muLCR with transverse-field muon spin rotation (TF-muSR) provides the means to identify and characterize free radicals via their nuclear hyperfine coupling constants. Because the radicals are derived from the addition of muonium (Mu = mu+ e-) to unsaturated compounds, the ensuing muoniated free radicals correspond to conventional organic free radicals but with a muon spin label substituted for one of the protons. Muon spin spectroscopy is the only technique presently being used to characterize transient free radicals under hydrothermal conditions in an unambiguous manner, free from interference from other reaction intermediates. This paper demonstrates how muoniated radicals can be used to monitor the species present in hydrothermal systems, and examples are presented from two classes of reaction: dehydration of alcohols and enolization of ketones. Spectra are displayed and hyperfine constants reported for muoniated forms of the following free radicals in superheated water (typically 350 degrees C at 250 bar): 2-propyl, 2-methyl-2-propyl (tert-butyl), and 2-hydroxy-2-propyl. The latter radical is the product of muonium addition to both the keto and the enol forms of acetone, but different isotopomers are produced according to which reaction channel is dominant. This should prove invaluable in future studies of the role of enols in combustion.  相似文献   

8.
Understanding the characteristics of radicals formed from silicon‐containing heavy analogues of alkenes is of great importance for their application in radical polymerization. Steric and electronic substituent effects in compounds such as phosphasilenes not only stabilize the Si=P double bond, but also influence the structure and species of the formed radicals. Herein we report our first investigations of radicals derived from phosphasilenes with Mes, Tip, Dur, and NMe2 substituents on the P atom, using muon spin spectroscopy and DFT calculations. Adding muonium (a light isotope of hydrogen) to phosphasilenes reveals that: a) the electron‐donor NMe2 and the bulkiest Tip‐substituted phosphasilenes form several muoniated radicals with different rotamer conformations; b) bulky Dur‐substituted phosphasilene forms two radicals (Si‐ and P‐centred); and c) Mes‐substituted phosphasilene mainly forms one species of radical, at the P centre. These significant differences result from intramolecular substituent effects.  相似文献   

9.
A short-lived radical containing only one I = 1/2 nucleus, the muoniated 1,2-dicarboxyvinyl radical dianion, was produced in an aqueous solution by the reaction of muonium with the dicarboxyacetylene dianion. The identity of the radical was confirmed by measuring the muon hyperfine coupling constant (hfcc) by transverse field muon spin rotation spectroscopy and comparing this value with the hfcc obtained from DFT calculations. The muon spin relaxation rate of this radical was measured as a function of temperature in zero magnetic field by the zero field muon spin relaxation technique. The results have been interpreted using the theoretical model of Fedin et al. (J. Chem. Phys., 2003, 118, 192). The muon spin polarization decreases exponentially with time after muon implantation and the temperature dependence of the spin relaxation rate indicates that the dominant relaxation mechanism is the modulation of the anisotropic hyperfine interaction due to molecular rotation. The effective radius of the radical in solution was determined to be 1.12 ± 0.04 nm from the dependence of the muon spin relaxation rate on the temperature and viscosity of the solution, and is approximately 3.6 times larger than the value obtained from DFT calculations.  相似文献   

10.
The muon hyperfine coupling constant (hfc) of the light hydrogen isotope muonium (Mu) was measured in aqueous methanol, NaCl, and KCl solutions with varying concentrations, in deuterated water, and in deuterated methanol. The muon hfc is shown to be sensitive to the size and composition of the primary solvation shell, and the three-dimensional harmonic oscillator model of Roduner et al. (J. Chem. Phys. 1995, 102, 5989) has been modified to account for dependence of the muon hfc on the methanol or salt concentration. The muon hfc of Mu in the aqueous methanol solutions decreases with increasing methanol concentration up to a mole fraction (chiMeOH) of approximately 0.4, above which the muon hfc is approximately constant. The concentration dependence of the muon hfc is due to hydrophobic nature of Mu. It is preferentially solvated by the methyl group of methanol, and the proportion of methanol molecules in the primary solvation shell is greater than that in the bulk solution. Above chiMeOH approximately 0.4, Mu is completely surrounded by methanol. The muon hfc decreases with increasing methanol concentration because more unpaired electron spin density is transferred from Mu to methanol than to water. The unpaired electron spin density is transferred from Mu to the solvent by collisions that stretch one of the solvents bonds. The amount of spin density transferred is likely inversely related to the activation barrier for abstraction from the solvent, which accounts for the larger muon hfc in the deuterated solvents. The muon hfc of Mu in electrolyte solution decreases with increasing concentration of NaCl or KCl. We suggest that the decrease of the muon hfc is due to the amount of spin density transferred from Mu to its surroundings being dependent on the average orientation of the water molecules in the primary solvation shell, which is influenced by both Mu and the ions in solution, and spin density transfer to the ions themselves.  相似文献   

11.
Multifrequency electron paramagnetic resonace (EPR) spectroscopy and electronic structure calculations were performed on [Co(4)O(4)(C(5)H(5)N)(4)(CH(3)CO(2))(4)](+) (1(+)), a cobalt tetramer with total electron spin S = 1/2 and formal cobalt oxidation states III, III, III, and IV. The cuboidal arrangement of its cobalt and oxygen atoms is similar to that of proposed structures for the molecular cobaltate clusters of the cobalt-phosphate (Co-Pi) water-oxidizing catalyst. The Davies electron-nuclear double resonance (ENDOR) spectrum is well-modeled using a single class of hyperfine-coupled (59)Co nuclei with a modestly strong interaction (principal elements of the hyperfine tensor are equal to [-20(±2), 77(±1), -5(±15)] MHz). Mims (1)H ENDOR spectra of 1(+) with selectively deuterated pyridine ligands confirm that the amount of unpaired spin on the cobalt-bonding partner is significantly reduced from unity. Multifrequency (14)N ESEEM spectra (acquired at 9.5 and 34.0 GHz) indicate that four nearly equivalent nitrogen nuclei are coupled to the electron spin. Cumulatively, our EPR spectroscopic findings indicate that the unpaired spin is delocalized almost equally across the eight core atoms, a finding corroborated by results from DFT calculations. Each octahedrally coordinated cobalt ion is forced into a low-spin electron configuration by the anionic oxo and carboxylato ligands, and a fractional electron hole is localized on each metal center in a Co 3d(xz,yz)-based molecular orbital for this essentially [Co(+3.125)(4)O(4)] system. Comparing the EPR spectrum of 1(+) with that of the catalyst film allows us to draw conclusions about the electronic structure of this water-oxidation catalyst.  相似文献   

12.
The neutral trinuclear iron-thiolate-nitrosyl, [(ON)Fe(mu-S,S-C(6)H(4))](3) (1), and its oxidation product, [(ON)Fe(mu-S,S-C(6)H(4))](3)[PF(6)] (2), were synthesized and characterized by IR, X-ray diffraction, X-ray absorption, electron paramagnetic resonance (EPR), and magnetic measurement. The five-coordinated, square pyramidal geometry around each iron atom in complex 1 remains intact when complex 1 is oxidized to yield complex 2. Magnetic measurements and EPR results show that there is only one unpaired electron in complex 1 (S(total) = 1/2) and no unpaired electron (S(total) = 0) in 2. The detailed geometric comparisons between complexes 1 and 2 provide understanding of the role that the unpaired electron plays in the chemical bonding of this trinuclear complex. Significant shortening of the Fe-Fe, Fe-N, and Fe-S distances around Fe(1) is observed when complex 1 is oxidized to 2. This result implicates that the removal of the unpaired electron does induce the strengthening of the Fe-Fe, Fe-N, and Fe-S bonds in the Fe(1) fragment. A significant shift of the nuNO stretching frequency from 1751 cm(-1) (1) to 1821, 1857 cm(-1) (2) (KBr) also indicates the strengthening of the N-O bonds in complex 2. The EPR, X-ray absorption, magnetic measurements, and molecular orbital calculations lead to the conclusion that the unpaired electron in complex 1 is mainly allocated in the Fe(1) fragment and is best described as {Fe(1)NO}7, so that the unpaired electron is delocalized between Fe and NO via d-pi* orbital interaction; some contributions from [Fe(2)NO] and [Fe(3)NO] as well as the thiolates associated with Fe (1) are also realized. According to MO calculations, the spin density of complex 1 is predominantly located at the Fe atoms with 0.60, -0.15, and 0.25 at Fe(1), Fe(2), and Fe(3), respectively.  相似文献   

13.
The first radical adducts of a stable N-heterocyclic germylene were investigated. Novel radical species were produced from a variety of precursors and studied by EPR spectroscopy. DFT (B3LYP) calculations of radical adducts of different (C, Si, Ge) unsaturated N-heterocyclic divalent species with phenoxyl radical show that in the radicals studied the unpaired electron is delocalized over the five-membered ring and the spin density on the central atoms decreases in the following order: C > Si > Ge. These trends can be understood in terms of zwitterionic structure of radical adducts.  相似文献   

14.
The radicals obtained in trehalose dihydrate single crystals after 77 K X-irradiation have been investigated at the same temperature using X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR-induced EPR (EIE) techniques. Five proton hyperfine coupling tensors were unambiguously determined from the ENDOR measurements and assigned to three carbon-centered radical species (T1, T1*, and T2) based on the EIE spectra. EPR angular variations revealed the presence of four additional alkoxy radical species (T3 to T6) and allowed determination of their g tensors. Using periodic density functional theory (DFT) calculations, T1/T1*, T2, and T3 were identified as H-loss species centered at C4, C1', and O2', respectively. The T4 radical is proposed to have the unpaired electron at O4, but considerable discrepancies between experimental and calculated HFC values indicate it is not simply the (net) H-loss species. No suitable models were found for T5 and T6. These exhibit a markedly larger g anisotropy than T3 and T4, which were not reproduced by any of our DFT calculations.  相似文献   

15.
Hyperfine coupling in methyl radical isotopomers   总被引:1,自引:0,他引:1  
The hyperfine coupling constants (hfcs) of two methyl radical isotopomers, CH2Mu and CD2Mu, have been measured over a wide range of temperature in ketene and ketene-d2, from which the radicals were generated. The magnitudes of the hfcs of these muoniated methyl radical isotopomers are larger than those of CH3 and CD3 due to larger zero-point energy in the out-of-plane bending mode. In contrast to CH3 and CD3, where the coupling constants become smaller with increasing temperature, the negative hfcs of the muoniated radicals were found to increase in magnitude (become more negative) with temperature, passing through a maximum near the boiling point of ketene. This behavior is attributed to a solvent-induced change in the force constant of the out-of-plane bending mode. The opposite temperature effect known for CH3 and CD3 is explained by excitation of the low frequency out-of-plane bending mode. This effect is much smaller in the muoniated radicals, where the vibrational frequency is significantly higher due to the light mass of muonium; consequently, the solvent effect dominates at low temperatures.  相似文献   

16.
The formation of the cyclohexadienyl radical, C(6)H(6)Mu, in ionic and molecular solvents has been compared. This is the first time that a muoniated free radical is reported in an ionic liquid. In marked contrast to molecular liquids, free radical generation in ionic liquids is significantly enhanced. Comparison of the hyperfine interactions in the ionic liquid and in molecular solvents and with theoretical calculations, suggests significant and unforeseen solvent interaction with the cyclohexadienyl radical.  相似文献   

17.
Carotenoid (Car) radical intermediates formed upon catalytic or photooxidation of lutein (I), 7'-apo-7',7'-dicyano-beta-carotene (II), and lycopene (III) inside Cu(II)-MCM-41 molecular sieves were studied by pulsed electron nuclear double resonance (ENDOR) spectroscopies. The Davies and Mims ENDOR spectra (15-20 K) were simulated using the hyperfine coupling constants predicted by density functional theory (DFT) calculations. The DFT calculations revealed that upon chemical oxidation, carotenoid radical cations (Car*+) are formed, whereas carotenoid neutral radicals (#Car*) are produced by proton loss (indicated by #) from the radical cation. This loss is to first order independent of polarity or hydrogen bonding for carotenoids I, II, or III inside Cu(II)-MCM-41 molecular sieves.  相似文献   

18.
A range of radicals, CH2(Mu) HX (1) and XCH(Mu)CR2 (2), where X is a second-row substituent, have been studied by transverse-fieldμ +SR spectroscopy. The reduced muon—electron hyperfine coupling constants (A′Mu) for class (1) were all close to 37.3 G, the value for the parent radical CH2(Mu)CH2. However, for class (2)A′ Mu values are greatly reduced, as is the case for the corresponding hydrogen derivatives, XCH2CR2, relative to CH3CH2. Nevertheless, the reduction in coupling for Mu in (2] is appreciably less that that for1H in XCH2CR2 radicals, suggesting significant competition between Mu and X for the out-of-plane site. In addition to theμ + SR studies, the ESR spectra for the radicals (MeO)3SiCHCH3 and (MeO)3SiCH2CH2 have been measured for comparative purposes.  相似文献   

19.
Pulsed electron nuclear double resonance (ENDOR) and two-dimensional (2D)-hyperfine sublevel correlation spectroscopy (HYSCORE) studies in combination with density functional theory (DFT) calculations revealed that photo-oxidation of natural zeaxanthin (ex Lycium halimifolium) and violaxanthin (ex Viola tricolor) on silica-alumina produces the carotenoid radical cations (Car*+) and also the neutral carotenoid radicals (#Car*) as a result of proton loss (indicated by #) from the C4(4') methylene position or one of the methyl groups at position C5(5'), C9(9'), or C13(13'), except for violaxanthin where the epoxide at positions C5(5')-C6(6') raises the energy barrier for proton loss, and the neutral radicals #Car*(4) and #Car*(5) are not observed. DFT calculations predict the largest isotropic beta-methyl proton hyperfine couplings to be 8 to 10 MHz for Car*+, in agreement with previously reported hyperfine couplings for carotenoid pi-conjugated radicals with unpaired spin density delocalized over the whole molecule. Anisotropic alpha-proton hyperfine coupling tensors determined from the HYSCORE analysis were assigned on the basis of DFT calculations with the B3LYP exchange-correlation functional and found to arise not only from the carotenoid radical cation but also from carotenoid neutral radicals, in agreement with the analysis of the pulsed ENDOR data. The formation of the neutral radical of zeaxanthin should provide another effective nonphotochemical quencher of the excited state of chlorophyll for photoprotection in the presence of excess light.  相似文献   

20.
The charge carrier transporting ability in the polymorphism of tris(8-hydroxyquinolinato)aluminum(III) (Alq(3)) has been studied using density functional theory (DFT) and Marcus charge transport theory. α- and β-Alq(3) composed of mer-Alq(3) molecules have stronger electron-transporting property (n-type materials) compared with their hole-transporting ability. In contrast, γ- and δ-Alq(3) formed by fac-Alq(3) molecules possess stronger hole-transporting character than their electron-transporting ability. The detailed theoretical calculations indicate the reason lies in the differences of HOMO and LUMO distribution states of the two kinds of isomers, and the different molecular packing modes of charge-transporting pathways for different phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号