首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the reaction kinetics of hydrogen combustion at high-pressure and high-temperature conditions, we constructed a ReaxFF training set to include reaction energies and transition states relevant to hydrogen combustion and optimized the ReaxFF force field parameters against training data obtained from quantum mechanical calculations and experimental values. The optimized ReaxFF potential functions were used to run NVT MD (i.e., molecular dynamics simulation with fixed number of atoms, volume, and temperature) simulations for various H(2)/O(2) mixtures. We observed that the hydroperoxyl (HO(2)) radical plays a key role in the reaction kinetics at our input conditions (T ≥ 3000 K, P > 400 atm). The reaction mechanism observed is in good agreement with predictions of existing continuum-scale kinetic models for hydrogen combustion, and a transition of reaction mechanism is observed as we move from high pressure, low temperature to low pressure, high temperature. Since ReaxFF derives its parameters from quantum mechanical data and can simulate reaction pathways without any preconditioning, we believe that atomistic simulations through ReaxFF could be a useful tool in enhancing existing continuum-scale kinetic models for prediction of hydrogen combustion kinetics at high-pressure and high-temperature conditions, which otherwise is difficult to attain through experiments.  相似文献   

2.
A number of modern technological applications require a detailed calculation of the physical properties of aggregated aerosol particles. For example, in probing soot aerosols by the method called laser-induced incandescence (LII), the soot clusters are suddenly heated by a short, powerful laser pulse and then cool down to the temperature of the carrier gas. LII sizing is based on rigorous calculation of the soot aggregate heat-up and cooling and involves prediction of laser light absorption and energy and mass transfer between aggregated particles and the ambient gas. This paper describes results of numerical simulations of the mass or energy transfer between the gas and fractal-like aggregates of N spherical particles in either the free-molecular or continuum regime, as well as the light scattering properties of random fractal-like aggregates, based on Rayleigh-Debye-Gans (RDG) theory. The aggregate geometries are generated numerically using specially developed algorithms allowing "tuning" of the fractal dimension and prefactor values. Our results are presented in the form of easily applicable scaling laws, with special attention paid to relations between the aggregate gyration radius and the effective radius describing various transport processes between the aggregates and the carrier gas. Copyright 2000 Academic Press.  相似文献   

3.
Hexamethyldisiloxane (HMDSO) is one of the main impurities in the syngas produced from sewage and landfill plants. In order to utilize this syngas or control the characteristics of the generated silica particles, it is crucial to understand the chemical kinetics of HMDSO combustion. This study investigated the process of HMDSO combustion using synchrotron radiation mass spectrometry (SRMS), gas chromatography (GC), and ReaxFF molecular dynamics simulations. First, the force field used for ReaxFF simulation was validated by comparing the energies of different bond lengths, bond angles, and dihedral angles with the ones from DFT calculations. Good agreements were found. Then, ReaxFF simulations of HMDSO combustion with this force field were conducted under various conditions, which include different equivalence ratios (0.67, 1.0, and 1.5) and temperatures ranging from 2000 to 3500 K. The oxidation characteristics of HMDSO were analyzed, including the evolution of gas products and particle formation. Finally, based on the results from experiments and ReaxFF simulations, the reaction pathways, reaction lists, and reaction kinetics data during HMDSO combustion were obtained. A detailed reaction mechanism was proposed and validated by applying it in modeling the H2/HMDSO/O2 combustion systems. The temperature and part of the gas products such as CO and CO2 as well as SiO could be well predicted.  相似文献   

4.
In this work, we have investigated the hyperthermal collisions of atomic oxygens with graphene through molecular dynamics simulations using the ReaxFF reactive force field. First, following Paci et al. (J. Phys. Chem. A 2009, 113, 4677 - 4685), 5-eV energetic collisions of atomic oxygen with a 24-atom pristine graphene sheet and a sheet with a single vacancy defect, both functionalized with oxygen atoms in the form of epoxides, were studied. We found that the removal of an O(2) molecule from the surface of the graphene sheet occurs predominantly through an Eley-Rideal-type reaction mechanism. Our results, in terms of the number of occurrences of various reactive events, compared well with those reported by Paci et al. Subsequently, energetic collisions of atomic oxygen with a 25-times-expanded pristine sheet were investigated. The steady-state oxygen coverage was found to be more than one atom per three surface carbon atoms. Under an oxygen impact, the graphene sheet was always found to buckle along its diagonal. In addition, the larger sheet exhibited trampoline-like behavior, as a result of which we observed a much larger number of inelastic scattering events than those reported by Paci et al. for the smaller system. Removal of O(2) from the larger sheet occurred strictly through an Eley-Rideal-type reaction. Investigation of the events leading to the breakup of a pristine unfunctionalized graphene sheet and the effects of the presence of a second layer beneath the graphene sheet in an AB arrangement was done through successive impacts with energetic oxygen atoms on the structures. Breakup of a graphene sheet was found to occur in two stages: epoxide formation, followed by the creation and growth of defects. Events leading to the breakup of a two-layer graphene stack included epoxide formation, transformation from an AB to an AA arrangement as a result of interlayer bonding, defect formation and expansion in the top layer, and finally erosion of the bottom layer. We observed that the breakup of the two-layer stack occurred through a sequential, layer-by-layer, erosion process.  相似文献   

5.
6.
Parameterization of a molecular dynamics force field is essential in realistically modeling the physicochemical processes involved in a molecular system. This step is often challenging when the equations involved in describing the force field are complicated as well as when the parameters are mostly empirical. ReaxFF is one such reactive force field which uses hundreds of parameters to describe the interactions between atoms. The optimization of the parameters in ReaxFF is done such that the properties predicted by ReaxFF matches with a set of quantum chemical or experimental data. Usually, the optimization of the parameters is done by an inefficient single‐parameter parabolic‐search algorithm. In this study, we use a robust metropolis Monte‐Carlo algorithm with simulated annealing to search for the optimum parameters for the ReaxFF force field in a high‐dimensional parameter space. The optimization is done against a set of quantum chemical data for MgSO4 hydrates. The optimized force field reproduced the chemical structures, the equations of state, and the water binding curves of MgSO4 hydrates. The transferability test of the ReaxFF force field shows the extend of transferability for a particular molecular system. This study points out that the ReaxFF force field is not indefinitely transferable. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
To make a practical molecular dynamics (MD) simulation of the large-scale reactive chemical systems of Li-H and Li-C, we have optimized parameters of the reactive force field (ReaxFF) for these systems. The parameters for this force field were obtained from fitting to the results of density functional theory (DFT) calculations on the structures and energy barriers for a number of Li-H and Li-C molecules, including Li(2), LiH, Li(2)H(2), H(3)C-Li, H(3)C-H(2)C-Li, H(2)C=C-LiH, HCCLi, H(6)C(5)-Li, and Li(2)C(2), and to the equations of state and lattice parameters for condensed phases of Li. The accuracy of the developed ReaxFF was also tested by comparison to the dissociation energies of lithium-benzene sandwich compounds and the collision behavior of lithium atoms with a C(60) buckyball.  相似文献   

8.
We have developed a reactive force field (ReaxFF(MgH)) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting to quantum chemical (QM) data on magnesium clusters and on the equations of states for condensed phases of magnesium metal and magnesium hydride crystal. The force field reproduces the QM-derived cell parameters, density, and the equations of state for various pure Mg and MgH(2) crystal phases as well as and bond dissociation, angle bending, charge distribution, and reaction energy data for small magnesium hydride clusters. To demonstrate one application of ReaxFF(MgH), we have carried out MD simulations on the hydrogen absorption/desorption process in magnesium hydrides, focusing particularly on the size effect of MgH(2) nanoparticles on H(2) desorption kinetics. Our results show a clear relationship between grain size and heat of formation of MgH(2); as the particle size decreases, the heat of formation increases. Between 0.6 and 2.0 nm, the heat of formation ranges from -16 to -19 kcal/Mg and diverges toward that of the bulk value (-20.00 kcal/Mg) as the particle diameter increases beyond 2 nm. Therefore, it is not surprising to find that Mg nanoparticles formed by ball milling (20-100 nm) do not exhibit any significant change in thermochemical properties.  相似文献   

9.
A new technique is suggested for obtaining nanoparticles from highly supersaturated vapor resulting from the laser photolysis of volatile compounds. The growth of carbon nanoparticles resulting from C3O2 photolysis has been studied in detail. Absorbing UV quanta (from an Ar-F excimer laser), C3O2 molecules decompose to yield atomic carbon vapor with precisely known and readily controllable parameters. This is followed by the condensation of supersaturated carbon vapor and the formation of carbon nanoparticles. These processes have been investigated by the laser extinction and laser-induced incandescence (LII) methods in wide ranges of experimental conditions (carbon vapor concentration, nature of the diluent gas, and gas pressure). The current and ultimate particle sizes and the kinetic parameters of particle growth have been determined. The characteristic time of particle growth ranges between 20 and 1000 μs, depending on photolysis conditions. The ultimate particle size determined by electron microscopy is 5–12 nm for all experimental conditions. It increases with increasing total gas pressure and carbon vapor partial pressure and depends on the diluent gas. The translational energy accommodation coefficients for the Ar, He, CO, and C3O2 molecules interacting with the carbon particle surface have been determined by comparing the LII and electron microscopic particle sizes. A simple model has been constructed to describe the condensation of carbon nanoparticles from supersaturated atomic vapor. According to this model, the main process in nanoparticle formation is surface growth through the addition of separate atoms to the nucleation cluster. The nucleus concentrations for various condensation parameters have been determined by comparing experimental and calculated data.  相似文献   

10.
Despite the extensive research studies, the understanding of the fundamental mechanisms of chemical transformations at the cracking of hydrocarbons remains unexplored. In the present study, the initial stages of both thermal and catalytic cracking of n‐octadecane C18H38 (with a nickel Ni49 particle as a catalyst) were investigated using the ReaxFF force field (the ReaxFF software package). The initial cracking mechanism of n‐octadecane was simulated at four different temperatures 1,800, 1,900, 2,000, and 2,200 K on a large interface system (2,849 atoms) consisting of 49 nickel atoms surrounded by 50 hydrocarbon molecules. Analysis of trajectories, according to the simulations, reveals a complex mechanism for initiating thermal and catalytic cracking of C18H38. Thermal cracking of C18H38 is initiated by breaking the C–C bond and proceeds via a free‐radical mechanism, whereas catalytic cracking is preferentially activated by deprotonation and protonation of the C–C bond. This work demonstrates that the ReaxFF force field can be actively used in the study of complex chemical transformations that occur at the cracking of hydrocarbons.  相似文献   

11.
We present a reactive empirical potential with environment-dependent bond strengths for the carbon-oxygen (CO) system. The distinct feature of the potential is the use of three adjustable parameters characterizing the bond: the strength, length, and force constant, rather than a single bond order parameter, as often employed in these types of potentials. The values of the parameters are calculated by fitting results obtained from density functional theory. The potential is tested in a simulation of oxidative unzipping of graphene sheets and carbon nanotubes. Previous higher-level theoretical predictions of graphene unzipping by adsorbed oxygen atoms are confirmed. Moreover, nanotubes with externally placed oxygen atoms are found to unzip much faster than flat graphene sheets.  相似文献   

12.
With the aim of developing a computationally inexpensive method for modeling the high-temperature reaction dynamics of transition metal catalyzed reactions we have developed a ReaxFF reactive force field in which the parameters are fitted to a substantial quantum mechanics (QM) training set, containing full reaction pathways for relevant reactions. In this paper we apply this approach to reactions involving carbon materials plus Co, Ni, and Cu atoms. We find that ReaxFF reproduces the QM reaction data with good accuracy while also reproducing the binding characteristics of Co, Ni, and Cu atoms to hydrocarbon fragments. To demonstrate the applicability of ReaxFF we performed high-temperature (1500 K) molecular dynamics simulations on a nonbranched all-carbon feedstock in the presence and absence of Co, Ni, and Cu atoms. We find that the presence of Co and Ni leads to substantial amounts of branched carbon atoms, leading eventually to the formation of carbon-nanotube-like species. In contrast, we find that under the same simulation conditions Cu leads to very little branching and leads to products with no nanotube character. In the absence of metals no branching is observed at all. These results suggest that Ni and Co catalyze the production of nanotube-like species whereas Cu does not. This is in excellent agreement with experimental observations, demonstrating that ReaxFF can provide a useful and computational tractable tool for studying the dynamics of transition metal catalytic chemistry.  相似文献   

13.
We have parametrized a reactive force field for NaH, ReaxFF(NaH), against a training set of ab initio derived data. To ascertain that ReaxFF(NaH) is properly parametrized, a comparison between ab initio heats of formation of small representative NaH clusters with ReaxFF(NaH) was done. The results and trend of ReaxFF(NaH) are found to be consistent with ab initio values. Further validation includes comparing the equations of state of condensed phases of Na and NaH as calculated from ab initio and ReaxFF(NaH). There is a good match between the two results, showing that ReaxFF(NaH) is correctly parametrized by the ab initio training set. ReaxFF(NaH) has been used to study the dynamics of hydrogen desorption in NaH particles. We find that ReaxFF(NaH) properly describes the surface molecular hydrogen charge transfer during the abstraction process. Results on heat of desorption versus cluster size shows that there is a strong dependence on the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. To gain more insight into the structural transformations of NaH during thermal decomposition, we performed a heating run in a molecular dynamics simulation. These runs exhibit a series of drops in potential energy, associated with cluster fragmentation and desorption of molecular hydrogen. This is consistent with experimental evidence that NaH dissociates at its melting point into smaller fragments.  相似文献   

14.
Ettringite is a hexacalcium aluminate trisulfate hydrate mineral that forms during Portland cement hydration. Its presence plays an important role in controlling the setting rate of the highly reactive aluminate phases in cement paste and has also been associated with severe cracking in cured hardened cement. To understand how it forms and how its properties influence those of hardened cement and concrete, we have developed a first-principles-based ReaxFF reactive force field for Ca/Al/H/O/S. Here, we report on the development of this ReaxFF force field and on its validation and application using reactive molecular dynamics (RMD) simulations to characterize and understand the elastic, plastic, and failure response of ettringite at the atomic scale. The ReaxFF force field was validated by comparing the lattice parameters, pairwise distribution functions, and elastic constants of an ettringite crystal model obtained from RMD simulations with those from experiments. The predicted results are in close agreement with published experimental data. To characterize the atomistic failure modes of ettringite, we performed stress-strain simulations to find that Ca-O bonds are responsible for failure of the calcium sulfate and tricalcium aluminate (C3A) column in ettringite during uniaxial compression and tension and that hydrogen bond re-formation during compression induces an increase in plastic strain beyond the material's stress-strain proportionality limit. These results provide essential insight into understanding the mechanistic role of this mineral in cement and concrete degradation, and the ReaxFF potential developed in this work serves as a fundamental tool to further study the kinetics of hydration in cement and concrete.  相似文献   

15.
Thermal decomposition of RDX from reactive molecular dynamics   总被引:1,自引:0,他引:1  
We use the recently developed reactive force field ReaxFF with molecular dynamics to study thermal induced chemistry in RDX [cyclic-[CH(2)N(NO(2))](3)] at various temperatures and densities. We find that the time evolution of the potential energy can be described reasonably well with a single exponential function from which we obtain an overall characteristic time of decomposition that increases with decreasing density and shows an Arrhenius temperature dependence. These characteristic timescales are in reasonable quantitative agreement with experimental measurements in a similar energetic material, HMX [cyclic-[CH(2)N(NO(2))](4)]. Our simulations show that the equilibrium population of CO and CO(2) (as well as their time evolution) depend strongly of density: at low density almost all carbon atoms form CO molecules; as the density increases larger aggregates of carbon appear leading to a C deficient gas phase and the appearance of CO(2) molecules. The equilibrium populations of N(2) and H(2)O are more insensitive with respect to density and form in the early stages of the decomposition process with similar timescales.  相似文献   

16.
Detailed formaldehyde adsorption and dissociation reactions on Fe(100) surface were studied using first principle calculations and molecular dynamics (MD) simulations, and results were compared with available experimental data. The study includes formaldehyde, formyl radical (HCO), and CO adsorption and dissociation energy calculations on the surface, adsorbate vibrational frequency calculations, density of states analysis of clean and adsorbed surfaces, complete potential energy diagram construction from formaldehyde to atomic carbon (C), hydrogen (H), and oxygen (O), simulation of formaldehyde adsorption and dissociation reaction on the surface using reactive force field, ReaxFF MD, and reaction rate calculations of adsorbates using transition state theory (TST). Formaldehyde and HCO were adsorbed most strongly at the hollow (fourfold) site. Adsorption energies ranged from ?22.9 to ?33.9 kcal/mol for formaldehyde, and from ?44.3 to ?66.3 kcal/mol for HCO, depending on adsorption sites and molecular direction. The dissociation energies were investigated for the dissociation paths: formaldehyde → HCO + H, HCO → H + CO, and CO → C + O, and the calculated energies were 11.0, 4.1, and 26.3 kcal/mol, respectively. ReaxFF MD simulation results were compared with experimental surface analysis using high resolution electron energy loss spectrometry (HREELS) and TST based reaction rates. ReaxFF simulation showed less reactivity than HREELS observation at 310 and 523 K. ReaxFF simulation showed more reactivity than the TST based rate for formaldehyde dissociation and less reactivity than TST based rate for HCO dissociation at 523 K. TST‐based rates are consistent with HREELS observation. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
To investigate the failure of the poly(dimethylsiloxane) polymer (PDMS) at high temperatures and pressures and in the presence of various additives, we have expanded the ReaxFF reactive force field to describe carbon-silicon systems. From molecular dynamics (MD) simulations using ReaxFF we find initial thermal decomposition products of PDMS to be CH(3) radical and the associated polymer radical, indicating that decomposition and subsequent cross-linking of the polymer is initiated by Si-C bond cleavage, in agreement with experimental observations. Secondary reactions involving these CH(3) radicals lead primarily to formation of methane. We studied temperature and pressure dependence of PDMS decomposition by following the rate of production of methane in the ReaxFF MD simulations. We tracked the temperature dependency of the methane production to extract Arrhenius parameters for the failure modes of PDMS. Furthermore, we found that at increased pressures the rate of PDMS decomposition drops considerably, leading to the formation of fewer CH(3) radicals and methane molecules. Finally, we studied the influence of various additives on PDMS stability. We found that the addition of water or a SiO(2) slab has no direct effect on the short-term stability of PDMS, but addition of reactive species such as ozone leads to significantly lower PDMS decomposition temperature. The addition of nitrogen monoxide does not significantly alter the degradation temperature but does retard the initial production of methane and C(2) hydrocarbons until the nitrogen monoxide is depleted. These results, and their good agreement with available experimental data, demonstrate that ReaxFF provides a useful computational tool for studying the chemical stability of polymers.  相似文献   

18.
The dissociation of hydrogen on eight platinum surfaces, Pt(111), Pt(100), Pt(110), Pt(211), Pt(311), Pt(331), Pt(332), and Pt(533), has been studied using molecular dynamics and the reactive force field, ReaxFF. The force field, which includes the degrees of freedom of the atoms in the platinum substrate, was used unmodified with potential parameters determined from previous calculations performed on a training set exclusive of the surfaces considered in this work. The energetics of the eight surfaces in the absence of hydrogen at 0 K were first compared to previous density functional theory (DFT) calculations and found to underestimate excess surface energy. However, taking Pt(111) as a reference state, we found that the trend between surfaces was adequately predicted to justify a relative comparison between the various stepped surfaces. To assess the strengths and weaknesses of the force field, we performed detailed simulations on two stepped surfaces, Pt(533) and Pt(211), and compared our findings to published experimental and theoretical results. In general, the absolute magnitude of reaction rate predictions was low, a result of the force field's tendency to underpredict surface energy. However, when normalized, the simulations show the correct linear scaling with incident energy and angular dependence at collision energies where a direct dissociation mechanism is observed. Because ReaxFF includes all degrees of freedom in the substrate, we carried out simulations aimed at understanding surface-temperature effects on Pt(533). On the basis of the results on Pt(533)/Pt(211), we studied the reaction of hydrogen at normal incidence on all eight surfaces in a range of energies where we anticipated the force field to give reasonable qualitative trends. These results were subsequently fit to a simple linear model that predicts the enhanced reactivity of surfaces containing 111-type atomic steps versus 100-type atomic steps. This model provides a simple framework for predicting high-energy/high-temperature kinetics of complex surfaces not vicinal to Pt(111).  相似文献   

19.
20.
In this work, we present the parametrization of Ca-O/H interactions within the reactive force field ReaxFF, and its application to study the hydration of calcium oxide surface. The force field has been fitted using density functional theory calculations on gas phase calcium-water clusters, calcium oxide bulk and surface properties, calcium hydroxide, bcc and fcc Ca, and proton transfer reactions in the presence of calcium. Then, the reactive force field has been used to study the hydration of the calcium oxide {001} surface with different water contents. Calcium oxide is used as a catalyzer in many applications such as CO(2) sequestration and biodiesel production, and the degree of surface hydroxylation is a key factor in its catalytic performance. The results show that the water dissociates very fast on CaO {001} bare surfaces without any defect or vacancy. The surface structure is maintained up to a certain amount of water, after which the surface undergoes a structural rearrangement, becoming a disordered calcium hydroxyl layer. This transformation is the most probable reason for the CaO catalytic activity decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号