首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygen atom transfer-electron transfer (ET) mechanistic dichotomy has been investigated in the oxidation of a number of aryl sulfides by H2O2 in acidic (pH 3) aqueous medium catalysed by the water soluble iron(III) porphyrin 5,10,15,20-tetraphenyl-21H,23H-porphine-p,p',p",p"'-tetrasulfonic acid iron(III) chloride (FeTPPSCl). Under these reaction conditions, the iron-oxo complex porphyrin radical cation, P+. Fe(IV)=O, should be the active oxidant. When the oxidation of a series of para-X substituted phenyl alkyl sulfides (X = OCH3, CH3, H, Br, CN) was studied the corresponding sulfoxides were the only observed product and the reaction yields as well as the reactivity were little influenced by the nature of X as well as by the bulkiness of the alkyl group. Labelling experiments using H(2)18O or H(2)18O2 clearly indicated that the oxygen atom in the sulfoxides comes exclusively from the oxidant. Moreover, no fragmentation products were observed in the oxidation of a benzyl phenyl sulfide whose radical cation is expected to undergo cleavage of the beta C-H and C-S bonds. These results would seem to suggest a direct oxygen atom transfer from the iron-oxo complex to the sulfide. However, competitive experiments between thioanisole (E degree = 1.49 V vs. NHE in H2O) and N,N-dimethylaniline (E degree = 0.97 V vs. NHE in H2O) resulted in exclusive N-demethylation, whereas the oxidation of N-methylphenothiazine (10, E degree = 0.95 V vs. NHE in CH3CN) and N,N-dimethyl-4-methylthioaniline (11, E degree = 0.65 V vs. NHE in H2O) produced the corresponding sulfoxide with complete oxygen incorporation from the oxidant. Since an ET mechanism must certainly hold in the reactions of 10 and 11, the oxygen incorporation experiments indicate that the intermediate radical cation, once formed, has to react with PFe(IV)=O (the reduced form of the iron-oxo complex which is formed by the ET step) in a fast oxygen rebound. Thus, an ET step followed by a fast oxygen rebound is also suggested for the other sulfides investigated in this work.  相似文献   

2.
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted.  相似文献   

3.
We report herein a comprehensive study of (porphinato)iron [PFe]-catalyzed isobutane oxidation in which molecular oxygen is utilized as the sole oxidant; these catalytic reactions were carried out and monitored in both autoclave reactors and sapphire NMR tubes. In situ 19F and 13C NMR experiments, coupled with GC analyses and optical spectra obtained from the autoclave reactions have enabled the identification of the predominant porphyrinic species present during PFe-catalyzed oxidation of isobutane. Electron-deficient PFe catalysts based on 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin [(C6F5)4PH2], 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(pentafluorophenyl) porphyrin [Br8(C6F5)4PH2], and 5,10,15,20-tetrakis(heptafluoropropyl) porphyrin [(C3F7)4PH2] macrocycles were examined. The nature and distribution of hydrocarbon oxidation products show that an autoxidation reaction pathway dominates the reaction kinetics, consistent with a radical chain process. For each catalytic system examined, PFeII species were shown not to be stable under moderate O2 pressure at 80 degrees C; in every case, the PFeII catalyst precursor was converted quantitatively to high-spin PFeIII complexes prior to the observation of any hydrocarbon oxidation products. Once catalytic isobutane oxidation is initiated, all reactions are marked by concomitant decomposition of the porphyrin-based catalyst. In situ 17O NMR spectroscopic studies confirm the incorporation of 17O from labeled water into the oxidation products, implicating the involvement of PFe-OH in the catalytic cycle. Importantly, Br8(C6F5)4PFe-based catalysts, which lack macrocycle C-H bonds, do not exhibit augmented stability with respect to analogous catalysts based on (C6F5)4PFe and (C3F7)4PFe species. The data presented are consistent with a hydrocarbon oxidation process in which PFe complexes play dual roles of radical chain initiator, and the species responsible for the catalytic decomposition of organic peroxides. This modified Haber-Weiss reaction scheme provides for the decomposition of tert-butyl hydroperoxide intermediates via reaction with PFe-OH complexes; the PFeIII species responsible for hydroperoxide decomposition are regenerated by reaction of PFeII with dioxygen under these experimental conditions.  相似文献   

4.
The epoxidation of cyclooctene catalyzed by iron(III) [tetrakis(pentafluorophenyl)] porphyrin chloride [(F20TPP)FeCl] was investigated in alcohol/acetonitrile solutions in order to determine the effects of the alcohol composition on the reaction kinetics. It was observed that alcohol composition affects both the observed rate of hydrogen peroxide consumption (the limiting reagent) and the selectivity of hydrogen peroxide utilization to form cyclooctene epoxide. The catalytically active species are formed only in alcohol-containing solvents as a consequence of (F(20)TPP)FeCl dissociation into [(F20TPP)Fe(ROH)]+ cations and Cl- anions. The observed reaction kinetics are analyzed in terms of a proposed mechanism for the epoxidation of the olefin and the decomposition of H2O2. The first step in this scheme is the reversible coordination of H2O2 to [(F20TPP)Fe(ROH)]+. The O-O bond of the coordinated H2O2 then undergoes either homolytic or heterolytic cleavage. The rate of homolytic cleavage is found to be independent of alcohol composition, whereas the rate of heterolytic cleavage increases with alcohol acidity. Heterolytic cleavage is envisioned to form iron(IV) pi-radical cations, whereas homolytic cleavage forms iron(IV) hydroxo cations. The iron(IV) radical cations are active for olefin epoxidation, whereas the iron(IV) cations catalyze the decomposition of H2O2. Reaction of iron(IV) pi-radical cations with H2O2 to form iron(IV) hydroxo cations is also included in the mechanism, a process that is favored by alcohols with a high charge density on the O atoms. The proposed mechanism describes successfully the effects of H2O2, cyclooctene, and porphyrin concentrations, as well as the effects of alcohol concentration.  相似文献   

5.
The coordination chemistry of a Rh(III) porphyrin building block was investigated with a view to the construction of heterometallic arrays of porphyrins. The Rh(III) porphyrin was found to coordinate methanol in the solid state and weakly in CDCl(3) solution. Crystallization afforded five coordinate pi stacked Rh(III) porphyrins. The distribution of products from reaction of Rh(III) porphyrin with DABCO, 4,4'-bipyridine, and 4,4'-bipyrimidine could be displaced toward dimeric species by silica gel column chromatography or recrystallization which served to remove excess ligand. Weak coordination to nitriles was observed, although it was sufficiently strong to organize a dimeric complex of 5,5'-dicyano-2,2'-bipyridine in the solid state. Complexes with 4,4'-bipyrimidine and 5,5'-dicyano-2,2'-bipyridine possess uncoordinated chelating nitrogen atoms. Larger heterometallic porphyrin arrays were assembled using a combination of Sn(IV) and Rh(III) porphyrin coordination chemistry. A Sn(IV) porphyrin acted as a core around which were coordinated two isonicotinate groups, carboxylic acid functionalized porphyrins, or porphyrin trimer dendrons. Rh(III) porphyrins were coordinated to pyridyl groups at the periphery of these entities. In this way an eleven porphyrin array, with four different porphyrin metalation states, was assembled. The diamagnetic nature of both the Rh(III) and Sn(IV) porphyrins, the slow ligand exchange kinetics on the NMR time scale, and tight ligand binding permitted the porphyrin arrays to be analyzed by two-dimensional (1)H NMR techniques.  相似文献   

6.
We have shown previously that iodosylbenzene-iron(III) porphyrin intermediates (2) are generated in the reactions of oxoiron(IV) porphyrin pi-cation radicals (1) and iodobenzene (PhI), that 1 and 2 are at equilibrium in the presence of PhI, and that the epoxidation of olefins by 2 affords high yields of epoxide products. In the present work, we report detailed mechanistic studies on the nature of the equilibrium between 1 and 2 in the presence of iodoarenes (ArI), the determination of reactive species responsible for olefin epoxidation when two intermediates (i.e., 1 and 2) are present in a reaction solution, and the fast oxygen exchange between 1 and H(2)18O in the presence of ArI. In the first part, we have provided strong evidence that 1 and 2 are indeed at equilibrium and that the equilibrium is controlled by factors such as the electronic nature of iron porphyrins, the electron richness of ArI, and the concentration of ArI. Secondly, we have demonstrated that 1 is the sole active oxidant in olefin epoxidation when 1 and 2 are present concurrently in a reaction solution. Finally, we have shown that the presence of ArI in a reaction solution containing 1 and H(2)18O facilitates the oxygen exchange between the oxo group of 1 and H(2)18O and that the oxygen exchange is markedly influenced by factors such as ArI incubation time, the amounts of ArI and H(2)18O used, and the electronic nature of ArI. The latter results are rationalized by the formation of an undetectable amount of 2 from the reaction of 1 and ArI through equilibrium that leads to a fast oxygen exchange between 2 and H(2)18O.  相似文献   

7.
A detailed characterization of intermediates in water oxidation catalyzed by a mononuclear Ru polypyridyl complex [Ru(II)-OH(2)](2+) (Ru = Ru complex with one 4-t-butyl-2,6-di-(1',8'-naphthyrid-2'-yl)-pyridine ligand and two 4-picoline ligands) has been carried out using electrochemistry, UV-vis and resonance Raman spectroscopy, pulse radiolysis, stopped flow, and electrospray ionization mass spectrometry (ESI-MS) with H(2)(18)O labeling experiments and theoretical calculations. The results reveal a number of intriguing properties of intermediates such as [Ru(IV)═O](2+) and [Ru(IV)-OO](2+). At pH > 2.9, two consecutive proton-coupled one-electron steps take place at the potential of the [Ru(III)-OH](2+)/[Ru(II)-OH(2)](2+) couple, which is equal to or higher than the potential of the [Ru(IV)═O](2+)/[Ru(III)-OH](2+) couple (i.e., the observation of a two-electron oxidation in cyclic voltammetry). At pH 1, the rate constant of the first one-electron oxidation by Ce(IV) is k(1) = 2 × 10(4) M(-1) s(-1). While pH-independent oxidation of [Ru(IV)═O](2+) takes place at 1420 mV vs NHE, bulk electrolysis of [Ru(II)-OH(2)](2+) at 1260 mV vs NHE at pH 1 (0.1 M triflic acid) and 1150 mV at pH 6 (10 mM sodium phosphate) yielded a red colored solution with a Coulomb count corresponding to a net four-electron oxidation. ESI-MS with labeling experiments clearly indicates that this species has an O-O bond. This species required an additional oxidation to liberate an oxygen molecule, and without any additional oxidant it completely decomposed slowly to form [Ru(II)-OOH](+) over 2 weeks. While there remains some conflicting evidence, we have assigned this species as (1)[Ru(IV)-η(2)-OO](2+) based on our electrochemical, spectroscopic, and theoretical observations alongside a previously reported analysis by T. J. Meyer's group (J. Am. Chem. Soc. 2010, 132, 1545-1557).  相似文献   

8.
The present study focuses on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes formed in the [Fe(III)(tpfpp)X]/H(2)O(2)/HOO(-) system (TPFPP=5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin; X=Cl(-) or CF(3) SO(3)(-)) in acetonitrile under basic conditions at -15 °C. Depending on the selected reaction conditions and the active form of the catalyst, the formation of high-spin [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] could be observed with the application of a low-temperature rapid-scan UV/Vis spectroscopic technique. Axial ligation and the spin state of the iron(III) center control the mode of O-O bond cleavage in the corresponding hydroperoxo porphyrin species. A mechanistic changeover from homo- to heterolytic O-O bond cleavage is observed for high- [Fe(III)(tpfpp)(OOH)] and low-spin [Fe(III)(tpfpp)(OH)(OOH)] complexes, respectively. In contrast to other iron(III) hydroperoxo complexes with electron-rich porphyrin ligands, electron-deficient [Fe(III)(tpfpp)(OH)(OOH)] was stable under relatively mild conditions and could therefore be investigated directly in the oxygenation reactions of selected organic substrates. The very low reactivity of [Fe(III)(tpfpp)(OH)(OOH)] towards organic substrates implied that the ferric hydroperoxo intermediate must be a very sluggish oxidant compared with the iron(IV)-oxo porphyrin π-cation radical intermediate in the catalytic oxygenation reactions of cytochrome P450.  相似文献   

9.
A detailed density functional theory examination of the reaction of an iron porphyrin chlorite dismutase model complex with chlorite was performed. We find that the molecular oxygen production observed occurs via the formation of η(1)-Fe(III) chlorite species, followed by the formation of O═Fe(IV) (compound II) and chlorine monoxide through homolytic bond cleavage. Chlorine monoxide then rebounds to form Fe(III)-peroxyhypochlorite followed by subsequent loss of chloride and loss of dioxygen accompanied by spin conversion to produce the Fe(III) complex and complete the catalytic cycle.  相似文献   

10.
Clear elucidation of the oxidative relationships of the active metal hydroperoxide moiety with its corresponding metal oxo and hydroxo intermediates would help the understanding of the different roles they may play in redox metalloenzymes and oxidation chemistry. Using an Mn(Me(2)EBC)Cl(2) complex, it was found that, in t-butanol-water (4 : 1) with excess H(2)O(2) at pH 1.5, the Mn(IV)-OOH moiety may exist in the catalytic solution with a mass signal of m/z = 358.1, which provides a particular chance to investigate its oxidative properties. In catalytic oxidations, the Mn(IV)-OOH moiety demonstrates a relatively poor activity in hydrogen abstraction from diphenyl methane and ethylbenzene with TOF of only 1.2 h(-1) and 1.1 h(-1) at 50 °C, whereas it can efficiently oxygenate diphenyl sulfide, methyl phenyl sulfide and benzyl phenyl sulfide with TOF of 13.8 h(-1), 15.4 h(-1) and 17.8 h(-1), respectively. In mechanistic studies using H(2)(18)O and H(2)(18)O(2), it was found that, in the Mn(IV)-OOH moiety mediated hydrogen abstraction and sulfide oxygenations, the reaction proceeds by two parallel pathways: one by direct oxygen insertion/transfer, and the other by plausible electron transfer. Together with a good understanding of the corresponding manganese(IV) oxo and hydroxo intermediates, this work provides the first chance to compare the reactivity differences and similarities of the active metal oxo, hydroxo and hydroperoxide intermediates. The available evidence reveals that the Mn(IV)-OOH moiety has a much more powerful oxidizing capability than the corresponding Mn(IV)=O and Mn(IV)-OH functional groups in both hydrogen abstraction and oxygenation.  相似文献   

11.
The water-soluble, non-mu-oxo dimer-forming porphyrin, [5,10,15,20-tetrakis-4'-t-butylphenyl-2',6'-bis-(N-methylene-(4'-t-butylpyridinium))porphyrinato]iron(III) octabromide, (P(8+))Fe(III), with eight positively charged substituents in the ortho positions of the phenyl rings, was characterized by UV-vis and 1H NMR spectroscopy and 17O NMR water-exchange studies in aqueous solution. Spectrophotometric titrations of (P(8+))Fe(III) indicated a pKa1 value of 5.0 for coordinated water in (P(8+))Fe(III)(H2O)2. The monohydroxo-ligated (P(8+))Fe(III)(OH)(H2O) formed at 5 < pH < 12 has a weakly bound water molecule that undergoes an exchange reaction, k(ex) = 2.4 x 10(6) s(-1), significantly faster than water exchange on (P(8+))Fe(III)(H2O)2, viz. k(ex) = 5.5 x 10(4) s(-1) at 25 degrees C. The porphyrin complex reacts with nitric oxide to yield the nitrosyl adduct, (P(8+))Fe(II)(NO+)(L) (L = H2O or OH-). The diaqua-ligated (P(8+))Fe(III)(H2O)2 binds and releases NO according to a dissociatively activated mechanism, analogous to that reported earlier for other (P)Fe(III)(H2O)2 complexes. Coordination of NO to (P(8+))Fe(III)(OH)(H2O) at high pH follows an associative mode, as evidenced by negative deltaS(double dagger)(on) and deltaV(double dagger)(on) values measured for this reaction. The observed ca. 10-fold decrease in the NO binding rate on going from six-coordinate (P(8+))Fe(III)(H2O)2 (k(on) = 15.1 x 10(3) M(-1) s(-1)) to (P(8+))Fe(III)(OH)(H2O) (k(on) = 1.56 x 10(3) M(-1) s(-1) at 25 degrees C) is ascribed to the different nature of the rate-limiting step for NO binding at low and high pH, respectively. The results are compared with data reported for other water-soluble iron(III) porphyrins with positively and negatively charged meso substituents. Influence of the porphyrin periphery on the dynamics of reversible NO binding to these (P)Fe(III) complexes as a function of pH is discussed on the basis of available experimental data.  相似文献   

12.
Electrochemical formation of H2O2 and the subsequent ferryl porphyrin were examined by measuring luminol chemiluminescence and absorption spectrum using flow-injection method. Emission was observed under the cathodic potential (0.05 V at pH 2.0 and -0.3 V at pH 11.0) by the electrochemical reduction of buffer electrolytes solution but no emission was observed at anodic potentials. Fe(III)TMPyP solution was added at the down stream of the working electrode and was essential for the emission. Removal of dissolved O2 resulted in the decrease of emission intensity by more than 70%. In order to examine the lifetime of reduced active species, delay tubes were used in between working electrode and Fe(III)TMPyP inlet. Experimental results suggested the active species were stable for quite long. The emission was quenched considerably (>90%) when hydroperoxy catalase was added at the down stream of the working electrode whereas SOD had little effect. Significant inhibition of the emission by the addition of alkene at the down stream of the Fe(III)TMPyP inlet was considered as evidence of oxo-ferryl formation. The spectra at reduction potential under aerated condition were shifted to the longer wavelength (>430 nm) compared to the original spectrum of Fe(III)TMPyP (422 nm). All the spectra were perfectly reproduced by a combination of Fe(III)TMPyP and O=Fe(IV)TMPyP (438 nm) spectra. These observations lead to the conclusion that H2O2 was produced first by electrochemical reduction of O2, which then converted Fe(III)TMPyP into O=Fe(IV)TMPyP to activate luminol. The current efficiencies for the formation of H2O2 were estimated as about 30-65% in all over the pH.  相似文献   

13.
Dehaloperoxidase (DHP) from Amphitrite ornata is a heme protein that can function both as a hemoglobin and as a peroxidase. This report describes the use of 77 K cryoreduction EPR/ENDOR techniques to study both functions of DHP. Cryoreduced oxyferrous [Fe(II)-O(2)] DHP exhibits two EPR signals characteristic of a peroxoferric [Fe(III)-O(2)(2-)] heme species, reflecting the presence of conformational substates in the oxyferrous precursor. (1)H ENDOR spectroscopy of the cryogenerated substates shows that H-bonding interactions between His N(ε)H and heme-bound O(2) in these conformers are similar to those in the β-chain of oxyferrous hemoglobin A (HbA) and oxyferrous myoglobin, respectively. Decay of cryogenerated peroxoferric heme DHP intermediates upon annealing at temperatures above 180 K is accompanied by the appearance of a new paramagnetic species with an axial EPR signal with g(⊥) = 3.75 and g(∥) = 1.96, characteristic of an S = 3/2 spin state. This species is assigned to Compound I (Cpd I), in which a porphyrin π-cation radical is ferromagnetically coupled with an S = 1 ferryl [Fe(IV)═O] ion. This species was also trapped by rapid freeze-quench of the ambient-temperature reaction mixture of ferric [Fe(III)] DHP and H(2)O(2). However, in the latter case Cpd I is reduced very rapidly by a nearby tyrosine to form Cpd ES [(Fe(IV)═O)(porphyrin)/Tyr(?)]. Addition of the substrate analogue 2,4,6-trifluorophenol (F(3)PhOH) suppresses formation of the Cpd I intermediate during annealing of cryoreduced oxyferrous DHP at 190 K but has no effect on the spectroscopic properties of the remaining cryoreduced oxyferrous DHP intermediates and kinetics of their decay. These observations indicate that substrate (i) binds to oxyferrous DHP outside of the distal pocket and (ii) can reduce Cpd I to Cpd II [Fe(IV)═O]. These assumptions are also supported by the observation that F(3)PhOH has only a small effect on the EPR properties of radiolytically cryooxidized and cryoreduced ferrous [Fe(II)] DHP. EPR spectra of cryoreduced ferrous DHP disclose the multiconformational nature of the ferrous DHP precursor. The observation and characterization of Cpds I, II, and ES in the absence and in the presence of F(3)PhOH provides definitive evidence of a mechanism involving consecutive one-electron steps and clarifies the role of all intermediates formed during turnover.  相似文献   

14.
The catalytic epoxidation of cyclohexene by iron(III) porphyrin complexes and H2O2 has been investigated in alcohol solvents to understand factors affecting the catalyst activity in protic solvents. The yields of cyclohexene oxide and the Fe(III/II) reduction potentials of iron porphyrin complexes were significantly affected by the protic solvents, and there was a close correlation between the product yields and the reduction potentials of the iron porphyrin catalysts. The role of alcohol solvents was proposed to control the electronic nature of iron porphyrin complexes that determines the catalyst activity in the epoxidation of olefins by H2O2. We have also demonstrated that an electron-deficient iron porphyrin complex can catalyze the epoxidation of olefins by H2O2 under conditions of limiting substrate with high conversion efficiency in a solvent mixture of CH3OH and CH2Cl2.  相似文献   

15.
The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.  相似文献   

16.
An iron(II) complex with a pyridine-containing 14-membered macrocyclic (PyMAC) ligand L1 (L1 = 2,7,12-trimethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene), 1, was prepared and characterized. Complex 1 contains low-spin iron(II) in a pseudo-octahedral geometry as determined by X-ray crystallography. Magnetic susceptibility measurements (298 K, Evans method) and M?ssbauer spectroscopy (90 K, δ = 0.50(2) mm/s, ΔE(Q) = 0.78(2) mm/s) confirmed that the low-spin configuration of Fe(II) is retained in liquid and frozen acetonitrile solutions. Cyclic voltammetry revealed a reversible one-electron oxidation/reduction of the iron center in 1, with E(1/2)(Fe(III)/Fe(II)) = 0.49 V vs Fc(+)/Fc, a value very similar to the half-wave potentials of related macrocyclic complexes. Complex 1 catalyzed the epoxidation of cyclooctene and other olefins with H(2)O(2). Low-temperature stopped-flow kinetic studies demonstrated the formation of an iron(IV)-oxo intermediate in the reaction of 1 with H(2)O(2) and concomitant partial ligand oxidation. A soluble iodine(V) oxidant, isopropyl 2-iodoxybenzoate, was found to be an excellent oxygen atom donor for generating Fe(IV)-oxo intermediates for additional spectroscopic (UV-vis in CH(3)CN: λ(max) = 705 nm, ε ≈ 240 M(-1) cm(-1); M?ssbauer: δ = 0.03(2) mm/s, ΔE(Q) = 2.00(2) mm/s) and kinetic studies. The electrophilic character of the (L1)Fe(IV)═O intermediate was established in rapid (k(2) = 26.5 M(-1) s(-1) for oxidation of PPh(3) at 0 °C), associative (ΔH(?) = 53 kJ/mol, ΔS(?) = -25 J/K mol) oxidation of substituted triarylphosphines (electron-donating substituents increased the reaction rate, with a negative value of Hammet's parameter ρ = -1.05). Similar double-mixing kinetic experiments demonstrated somewhat slower (k(2) = 0.17 M(-1) s(-1) at 0 °C), clean, second-order oxidation of cyclooctene into epoxide with preformed (L1)Fe(IV)═O that could be generated from (L1)Fe(II) and H(2)O(2) or isopropyl 2-iodoxybenzoate. Independently determined rates of ferryl(IV) formation and its subsequent reaction with cyclooctene confirmed that the Fe(IV)-oxo species, (L1)Fe(IV)═O, is a kinetically competent intermediate for cyclooctene epoxidation with H(2)O(2) at room temperature. Partial ligand oxidation of (L1)Fe(IV)═O occurs over time in oxidative media, reducing the oxidizing ability of the ferryl species; the macrocyclic nature of the ligand is retained, resulting in ferryl(IV) complexes with Schiff base PyMACs. NH-groups of the PyMAC ligand assist the oxygen atom transfer from ferryl(IV) intermediates to olefin substrates.  相似文献   

17.
The nucleophilic addition reaction of a pyrrole nitrogen of free-base porphyrins to a pi-complexed acetylene ligand in a cationic Co(III) porphyrin intermediate afforded good yields of vinylene-Co,N'-linked bis(porphyrin)s, (Por)Co(III)-CH=CH-(N-Por)H(2). N-substituted porphyrin free bases are N-vinylated regioselectively at the pyrrole adjacent to the original N-substituted pyrrole in this reaction. Tris- and tetrakis(porphyrin)s have been prepared by reacting a vinylene-N,N'-linked bis(meso-tetraarylporphyrin) with (OEP)Co(III)(H(2)O)(2)ClO(4) (OEP: octaethylporphyrin dianion) and acetylene. The tetrakis(porphyrin) proved to be a 1:1 mixture of C(i)()- and C(2)-symmetric regioisomers. These organometallic Co(III) complexes underwent facile oxidative migration of the Co-bound vinyl group to a porphyrin pyrrole nitrogen when treated with Fe(III) salts or HClO(4) to provide moderate to good yields of Co(II) vinylene-N,N'-linked multi(porphyrin) complexes. (Vinylene-N,N')bis(porphyrin) free bases with combinations of different porphyrins have been obtained by this procedure. The homobinuclear (2Co(II), 2Cu(II), and 2Zn(II)) and heterobinuclear (Co(II)Cu(II) and Co(II)Zn(II)) complexes have been prepared and characterized spectroscopically. The single-crystal X-ray analysis of (CH=CH-N,N')[(OEP)Co(II)Cl][(TPP)Zn(II)Cl] (TPP: meso-tetraphenylporphyrin dianion) showed a face-to-face structure with an average inter-ring separation of 4.39 ? (triclinic P&onemacr;; Z = 2; a = 14.806(4), b = 18.703(10), c = 13.796(3) ?, alpha = 97.69(3), beta = 99.57(2), gamma = 96.74(3) degrees ).  相似文献   

18.
Porphyrin-manganese(V)-oxo and porphyrin-manganese(IV)-oxo species were produced in organic solvents by laser flash photolysis (LFP) of the corresponding porphyrin-manganese(III) perchlorate and chlorate complexes, respectively, permitting direct kinetic studies. The porphyrin systems studied were 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP), and 5,10,15,20-tetrakis(4-methylpyridinium)porphyrin (TMPyP). The order of reactivity for (porphyrin)Mn(V)(O) derivatives in self-decay reactions in acetonitrile and in oxidations of substrates was (TPFPP) > (TMPyP) > (TPP). Representative rate constants for reaction of (TPFPP)Mn(V)(O) in acetonitrile are k = 6.1 x 10(5) M(-1) s(-1) for cis-stilbene and k = 1.4 x 10(5) M(-1) s(-1) for diphenylmethane, and the kinetic isotope effect in oxidation of ethylbenzene and ethylbenzene-d(10) is k(H)/k(D) = 2.3. Competitive oxidation reactions conducted under catalytic conditions display approximately the same relative rate constants as were found in the LFP studies of (porphyrin)Mn(V)(O) derivatives. The apparent rate constants for reactions of (porphyrin)Mn(IV)(O) species show inverted reactivity order with (TPFPP) < (TMPyP) < (TPP) in reactions with cis-stilbene, triphenylamine, and triphenylphosphine. The inverted reactivity results because (porphyrin)Mn(IV)(O) disproportionates to (porphyrin)Mn(III)X and (porphyrin)Mn(V)(O), which is the primary oxidant, and the equilibrium constants for disproportionation of (porphyrin)Mn(IV)(O) are in the order (TPFPP) < (TMPyP) < (TPP). The fast comproportionation reaction of (TPFPP)Mn(V)(O) with (TPFPP)Mn(III)Cl to give (TPFPP)Mn(IV)(O) (k = 5 x 10(8) M(-1) s(-1)) and disproportionation reaction of (TPP)Mn(IV)(O) to give (TPP)Mn(V)(O) and (TPP)Mn(III)X (k approximately 2.5 x 10(9) M(-1) s(-1)) were observed. The relative populations of (porphyrin)Mn(V)(O) and (porphyrin)Mn(IV)(O) were determined from the ratios of observed rate constants for self-decay reactions in acetonitrile and oxidation reactions of cis-stilbene by the two oxo derivatives, and apparent disproportionation equilibrium constants for the three systems in acetonitrile were estimated. A model for oxidations under catalytic conditions is presented.  相似文献   

19.
A new Hangman porphyrin architecture has been developed to interrogate the ligand-field dependence of photoinduced PCET versus excitation energy transfer and intersystem crossing in PZn(II)-PFe(III)-OH dyads (P = porphyrin). In this design, a hanging carboxylic acid group establishes a hydrogen-bonding network to anchor the weak-field OH- ligand in the distal site of the PFe(III)-OH acceptor, whereas the proximal site is left available to accept strong-field imidazole ligands. Thus, controlling the tertiary coordination environment gives access to the first synthetic example of a porphyrin dyad with a biologically relevant weak-field/strong-field configuration of axial ligands at the heme. Transient absorption spectroscopy has been employed to probe the fate of the initial PZn(II)-based S1 excited state, revealing rapid S1 quenching for all dyads in the presence and absence of strong-field imidazole ligands (tau = 6-50 ps). The absence of a (P*+)Zn(II) signal that would complement photoinduced PCET at the PFe(III)-OH subunit (i.e., PFe(III)-OH --> PFe(II)-OH2) shows that excitation energy transfer and intersystem crossing channels dominate the quenching, regardless of whether proximal strong field ligands are present. Moreover, this photophysical assignment is independent of the solvent dielectric constant and whether a phenylene or biphenylene spacer is used to span the two porphyrin subunits. Electronic structure calculations suggest that the structural reorganization attendant to reductive PCET at the high-spin Fe(III)-OH center imposes a severe kinetic cost that can only be alleviated by inducing a low-spin electronic configuration with two strong-field axial ligands.  相似文献   

20.
We report in this study that an oxoiron(IV) porphyrin complex bearing electron-deficient porphyrin ligand, (TPFPP)FeIV=O (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion), shows reactivities similar to those found in oxoiron(IV) porphyrin pi-cation radicals. In the epoxidation of olefins by the (TPFPP)FeIV=O complex, epoxides were yielded as major products; cyclohexene oxide was the sole product formed in the epoxidation of cyclohexene, and stilbenes were stereospecifically oxidized to the corresponding epoxide products. More striking results were obtained in alkane hydroxylation reactions; the hydroxylation of adamantane afforded a high degree of selectivity for tertiary C-H bonds over secondary C-H bonds, and the hydroxylation of cis-1,2-dimethylcyclohexane yielded a tertiary alcohol product with >99% retention of stereochemistry. The latter result demonstrates that an oxoiron(IV) porphyrin complex hydroxylates alkanes with a high stereospecificity. Isotope labeling studies performed with H218O and 18O2 in the olefin epoxidation and alkane hydroxylation reactions demonstrated that oxygen atoms in oxygenated products derived from the oxoiron(IV) porphyrin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号