首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The kinetics of oxidation of aldoses, namely xylose, arabinose, galactose and glucose, by CeIV have been studied in HClO4 + H2SO4 medium and in the presence of PdII. The reactions exhibit a first order rate dependence with respect to oxidant. The rate is inversely dependent on the [HSO inf4 sup– ][H+] ratio. The order of reaction with respect to aldose decreases at higher [aldose]. Due to the formation of a complex between CeIV and PdII, a retarding effect of [PdII] on the rate of disappearance of [CeIV] has been observed. A mechanism consistent with the observed kinetic data is proposed.  相似文献   

2.
Summary Peroxodisulfate ion readily oxidises CoII-YOH [YOH =N(2-hydroxyethyl)ethylenediaminetriacetate] with the formation of an intermediate complex. The kinetics of the electron-transfer step follow the rate law: Rate = 2kHKH[H+][S2O8]2-[CoII-YOH]/(1 + KH[H+]) where [S2O8]2– is the total peroxodisulfate concentration, kH is the rate constant for the electron-transfer process, and KH is the pre-equilibrium protonation constant. Activation parameters have been evaluated. The intermediate, which was identified spectrophotometrically, slowly rearranges to the quinquedentate species Co(YOH)(H2O). The rate of this rearangement has also been measured.  相似文献   

3.
Summary The kinetics of OsO4-catalysed oxidation of cyclopentanol, cyclohexanol and cyclooctanol by alkaline hexacyanoferrate(III) have been studied at low [OH] so that the equilibrium between alcohol and alkoxide ion is not unduly shifted towards the latter. The reaction shows a first-order dependence in [OH]. The order of the reaction with respect to cycloalcohol is fractional, indicating the formation of an intermediate complex with OsVIII since the order with respect to hexacyanoferrate(III) ion is zero. The order with respect to OsVIII may be expressed by the equation kobs=a+b[OsVIII]. The analysis of the rate data indicates a significant degree of complex formation between [OsO3(OH)3] and ROH. It was found that the bimolecular rate constant k for the redox reaction between complex and OHk1, the forward rate constant for the formation of alkoxide ion. The activation parameters of these rate constants are reported.  相似文献   

4.
The kinetics of the formation and decomposition of MnIII have been investigated spectrophotometrically in acidic media at 25 °C. The complete rate law for MnIII formation isCrVI + DMF + MnII {H+} MnIII + CO2 + Me2NH + CrIII ... (1)MnIII + DMF {H+} MnII + CO2 + Me2NH ... (2)expressed by k obs1 = k 1 k1 K a1[H+][DMFH+][MnII]/{1 + K a1[H+]}. MnIII reduction by DMF follows the rate law k obs2 = k 2 K h[DMF][H+]2/{[H+] + K h}. The above results are accounted for by a mechanism involving the intermediacy of CrIV.  相似文献   

5.
The kinetics of oxidation of PdII by CeIV have been studied spectrophotometrically in HClO4 media at 40 °C. The reaction is first order each in [CeIV] and [PdII] at constant [H+]. Increasing [H+] accelerates the reaction rate with fractional order in [H+]. The initially added products, palladium(IV) and cerium(III) do not have any significant effect on the reaction rate. At constant acidity, increasing the added chloride concentration enhances the rate of reaction. H3Ce(SO4)4 and PdCl42− are the active species of oxidant and reductant respectively. The possible mechanisms are proposed and the reaction constants involved have been determined.  相似文献   

6.
Summary The kinetics of oxidation of [CoII(EDTA)]2- (EDTA = ethylenediaminetetraacetate) by N-bromosuccinimide (NBS) in aqueous solution obey the equation: Rate = k 2 K 3[CoII]T[NBS]/{1 + [H+]/K 2 + K 3[NBS]} where k 2 is the rate constant for the electron-transfer process, K 2 the equilibrium constant for the dissociation of [CoII(EDTAH)(H2O)] to [CoII(EDTA)(OH)]3– and K 3 the pre-equilibrium formation constant. The activation parameters are reported. It is proposed that electron transfer proceeds via an inner-sphere mechanism with the formation of an intermediate which slowly generates hexadentate[CoIII(EDTA)].Abstracted from the M.Sc. thesis of Eman S. H. Khaled.  相似文献   

7.
The kinetics of tetraamminecopper(II)-catalysed oxidation of SO2– 3 to SO2– 4 in ammonia buffers and in a nitrogen atmosphere obeys the rate law: –d[SIV]/dt = k 2[CuII][SO3 2–][NH3]–1. There is spectrophotometric evidence for the formation of the intermediate complex [Cu(NH3)3(SO3)] in a pre-equilibrium.  相似文献   

8.
Kinetics of Br anion oxidation by cerium(IV) species in aqueous H2SO4 solutions have been reexamined. The rate of reaction was determined spectrophotometrically based on a factor analysis of the absorbance – time data collected in the wavelength range 318–390 nm – the region characteristic for the cerium(IV) sulphato complexes. The data fit very well to a pseudo-first order dependence under a large molar excess of the reductant. The rate law of the form –d[CeIV]/dt = k[CeIV][Br]2 has been obtained at constant H2SO4 concentration and ionic strength I = 2 m. The pseudo-first order rate constant decreases with an [H2SO4] increase from 0.1 to ca. 0.4 m range, then increases for higher [H2SO4]. The apparent activation parameters have been calculated from the third order rate constants k for different [H2SO4].  相似文献   

9.
Kinetic and spectroscopic studies of the reactions of cyclohexylamine with the complexes [MX2(1,5-cyclooctadiene)] (I) (M = Pd; X = Cl, Br; M = Pt, X = Br) in acetone reveal the rate law, kobs = K1k2[amine]2, for the rapid sequence
For X = Br, the palladium(II) complex is ca. 70 times more reactive than its platinum(II) analogue. This is the first quantitative comparison reported to date for nucleophilic attack upon olefins coordinated to PdII and PtII centres. The reactivity order PdII ⪢ PtII may arise from the higher ionization potential of Pd2+ compared to Pt2+, which makes PdII a less effective back-π-bonder. Replacing the bromo ligands in [PdBr2(1,5-COD)] by chloro ligands lowers the rate of formation of III by a factor of 8.  相似文献   

10.
Summary The oxidation ofi-propanol (IPA) by N-bromosuccinimide (NBS) in basic solution was investigated separately in the presence of RuIII, OsVIII and RuIII + OsVIII ions. The order in [IPA] was found to be 0.7, 0.5 and 0.3 respectively in the above three cases in the concentration range studied. The order in [NBS] was unity in the presence of RuIII chloride but was found to be zero in the case of OsVIII and RuIII+OsVIII catalysis. The order in [metalion] was found to be nearly unity in all the three catalysed reactions. Increase in [OH] increased the rate of reaction while addition of succinimide retarded the rate of reaction. Decrease in dielectric constantsof the medium decreased the rate of oxidation. The pseudo first order rate constants (k), zero order rate constants (k0) and the formation constants (kf) of the substrate-catalyst complexes and the thermodynamic parameters have been evaluated. Suitable mechanisms in conformity with the experimental observations have been proposed for the three catalysed reactions.  相似文献   

11.
The oxidation of HgI by CeIV has been studied in aqueous H2SO4. A minute amount (10–6 mol dm–3) of OsVIII is sufficient to catalyse the reaction. The active catalyst, substrate and oxidant species are H2OsO5, [Hg2(SO4)HSO4] and H3Ce(SO4) 4, respectively. Possible mechanisms are proposed and the reaction constants involved have been determined.  相似文献   

12.
The kinetics and mechanism of ruthenium(III) catalyzed oxidation of tetrahydrofurfuryl alcohol (THFA) by cerium(IV) in sulfuric acid media have been investigated spectrophotometrically in the temperature range 298–313 K. It is found that the reaction is first-order with respect to CeIV, and exhibits a positive fractional order with respect to THFA and RuIII. The pseudo first-order ([THFA]≫[CeIV]≫[RuIII]) rate constant k obs decreases with the increase of [HSO 4 ]. Under the protection of nitrogen, the reaction system can initiate polymerization of acrylonitrile, indicating the generation of free radicals. On the basis of the experimental results, a reasonable mechanism has been proposed and the rate equations derived from the mechanism can explain all the experimental results. From the dependence of k obs on the concentration of HSO 4 , has been found as the kinetically active species. Furthermore, the rate constants of the rate determining step together with the activation parameters were evaluated.  相似文献   

13.
The reaction of H2[OsBr6] with DMSO in ethanol solution resulted in DMSO complex [H(dmso-O)2][OsIII(dmso-S)2Br4] (1) described previously as an intermediate product in the reaction of K2[OsBr6] with DMSO and characterized by EAS and ESR spectra. The coordination of DMSO molecules was established by IR and 1H and 13C NMR spectroscopy. The oxidation state of osmium and trans arrangement of DMSO molecules in the anion were established by ESR. The behavior of complex 1 in solutions was studied by EAS, ESR, and mass-spectrometry: a displacement of Br? ions accompanied by the reduction of osmium to oxidation state +2 occurs in DMSO, a solvation with displacement of DMSO molecules is observed at the first stage in water and methanol (rate constants 2.3 × 10?4 and 1.7 × 10?3 s?1, respectively), the sequential substitution of DMSO molecules and osmium oxidation to form [OsIVBr6]2? ions takes place in 4 mol/L HBr.  相似文献   

14.
Summary The kinetics of the oxidation of hypophosphite ion by platinum(IV) have been studied spectrophotometrically in alkaline medium at different temperatures. The rate increases as the pH increases and the empirical rate law applicable to the reaction is given by:-d[PtIV]/dt = k3[PtIV][H2PO2–][OH]The rate constant is 2.17×10–3 (l2 mo–2s–1) at 40.5°. The energy and entropy of activation for the reaction are 104.2 kJ mol–1 and 28.5 JK–1mol–1 respectively.  相似文献   

15.
The kinetics of oxidation of 1,4-thioxane (1,4-oxathiane) by alkaline K3Fe(CN)6 have been studied in the presence of OsVIII as catalyst. The reaction is first order in hexacyanoferrate(III) and OsVIII. The order in thioxane and OH is zero. While added salts and ethanol have a negligible effect on the oxidation rate, K4Fe(CN)6 retards it. On the basis of kinetic evidence, a mechanism has been proposed.  相似文献   

16.

Poly(N-2-sulfoethylethylenimine) (SEPEI) with a degree of modification equal to 0.30, 0.58, and 0.74, cross-linked with diethylene glycol diglycidyl ether, demonstrates efficient sorption properties with respect to PtIV, PdII, and AuIII ions. The selectivity coefficient KPd/Au in a HCl solution with pH 0.8 decreases from 90 to 61, and the selectivity coefficient KPd/Pt in a HCl solution with pH 3.9 increases from 0.94 to 480 with an increasing degree of modification. A thiourea hydrochloric acid solution effectively removes metal ions; the desorption of PtIV, PdII, and AuIII from the SEPEI surface reaches 100, 96.9, and 83.8%, respectively.

  相似文献   

17.
The kinetics of complex formation between the PdII ion and the new phenylazo-R-acid chromophore [HL] and it is para-substituted derivatives {X = H, Cl, CO2H, and SO2NH2}, [p-X-HL], have been studied at various temperatures. The observed rate constant is given by:kobs=/k1 K1/K[H+]+k2 K2}[p-X-HL]A mechanism involving initial formation of a 1:1 complex between the PdII ion and [p-X-HL], followed by aquation as the rate-determining step, is proposed. The activation enthalpy and entropy for the aquation were determined. The rate of formation is greatly effected by electron-withdrawing substitutents in the para position of the phenylazo-R-acid ligand. The solid complex of p-SO2NH2-phenylazo-R-acid has been prepared and characterized by elemental analysis, and FT-IR spectra. The p-substituted-phenylazo-R-acid ligands are very active against C. albicans fungi, so that these compounds can be used for the chemotherapy of candidiasis and other fungal skin diseases.  相似文献   

18.
The kinetics of oxidation of uric acid by thallium(III) has been studied in acetate buffers; the oxidation products are alloxan and urea. Deprotonated uric acid, UaH, and T1(OAc)3 are the reacting species. A probable reaction mechanism has been proposed conforming with rate law (1)-d[T1III]/dt=(k′1K′1+k′2K′2K1/[H+]) [T1III][UaH2]/1+K4[OAc] A comparative analysis with other soft acids HgII and PbIV has been attempted.  相似文献   

19.
Summary Solvent extraction of uranium-sodium diethyldithiocarbamate with ethylmethyl ketone and separation from titanium, zirconium, thorium, lanthanum and cerium has been described. It has been found that 11.75 to 47.00 mg of uranium can be extracted from a binary mixture containing 4.78 to 19.04 mg of titanium, 9.12 to 36.48 mg of zirconium, 116.0 to 460.0 mg of thorium, 6.95 to 27.8 mg of lanthanum or 7.06 to 28.24 mg of cerium at pH 3.0. The pH range between which the separations may be carried out successfully is 2.0 to 3.5. The following cations interfere in the separations: CuII, FeIII, CoII, BiIII, NiII, CrVI, TeIV, SeIV, AgI, HgII, AsIII, SnIV, PbIV, CdII, MoVI, MnII, VV, ZnII, InIII, TlI, WVI, OsVIII and NbV.
Zusammenfassung Uran kann durch Extraktion als Diäthyldithiocarbamidat mit Methyläthylketon von Ti, Zr, Th, La oder Ce getrennt werden. Der günstigste pH-Bereich liegt zwischen 2,0 und 3,5. Die Trennungen wurden mit folgenden Mengen durchgeführt: U (11,75–47,00 mg); Ti (4,78 bis 19,04 mg), Zr (9,12–36,48 mg) Th (116,0–460,0 mg), La (6,95–27,8 mg), Ce (7,06–28,24 mg). Folgende Ionen verursachen Störungen: CuII, FeIII, CoII, BiIII, NiII, CrVI, TeIV, SeIV, AgI, HgII, AsIII, SnIV, PbIV, CdII, MoVI, MnII, VVI, ZnII, InIII, TlI, WVI, OsVIII sowie NbV.
  相似文献   

20.
Summary A group of mixed-tris chelates of type [OsAQ2] [A = isonitrosoacetophenonate (A1) and isonitroso-propiophenonate (A2); Q = deprotonated 8-quinolinol (Q1) and 2-methyl-8-quinolinol (Q2)] have been prepared by two distinct synthetic approaches. [OsAQ2]+, obtained by CeIV oxidation of [OsAQ2], can be regenerated by hydrazine hydrate reduction of the former. The complexes, characterized by physico-chemical, magnetic and spectroscopic methods, exhibit several spin-allowed and spin-forbidden charge transfer transitions in their electronic spectra. In MeCN solution the OsN3O3 unit displays a nearly-reversible OsIV-OsIII change and an OsIII-OsII couple in the ca. -1.0– + 0.3V range versus s.c.e. The stability of the metal oxidation levels is discussed in terms of the chemical and electrochemical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号