首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Organic‐inorganic hybrid materials consisting of nanosized silica particles with surface grafted PS or PS‐b‐PMMA were synthesized using ATRP. These hybrid materials were used in the fabrication of highly‐ordered isoporous membranes. Optical characterization revealed that the membranes consisted of hexagonally ordered pores of uniform size. The combination of an open pore structure and high surface area makes isoporous membranes into materials of high interest in fields as biotechnology and photonics.

Image from optical microscope of hybrid nanoparticle membrane of SiO2g‐PS with hexagonally‐ordered pores.  相似文献   


2.
The structure of microcrystalline cellulose (MCC) made by mild acid hydrolysis from cotton linter, flax fibres and sulphite or kraft cooked wood pulp was studied and compared with the structure of the starting materials. Crystallinities and the length and the width of the cellulose crystallites were determined by wide-angle X-ray scattering and the packing and the cross-sectional shape of the microfibrils were determined by small-angle X-ray scattering. The morphological differences were studied by scanning electron microscopy. A model for the changes in microfibrillar structure between native materials, pulp and MCC samples was proposed. The results indicated that from softwood or hardwood pulp, flax cellulose and cotton linter MCC with very similar nanostructures were obtained with small changes in reaction conditions. The crystallinity of MCC samples was 54–65%. The width and the length of the cellulose crystallites increased when MCC was made. For example, between cotton and cotton MCC the width increased from 7.1 nm to 8.8 nm and the length increased from 17.7 nm to 30.4 nm. However, the longest crystallites were found in native spruce wood (35–36 nm).  相似文献   

3.
Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.  相似文献   

4.
Double-hydrophilic block copolymer (DHBC)-directed mineralization is investigated by dissipative particle dynamics (DPD) simulation. By mineralization, we refer to the formation of inorganic crystals from the solution. In the current study, the DHBCs are modeled as chains of A and B blocks with repulsion between unlike blocks, while the mineralization is approximated by aggregation of hydrophobic nanoparticles from the solution. Depending on the relative concentrations of nanoparticles and DHBC, dispersed spherical aggregates, hexagonally packed cylinders, and ordered lamellae structures are obtained. The structures formed are seen to be controlled by competing forces between aggregation of nanoparticles, the interaction of DHBC with nanoparticles, and the self-assembly of DHBC in the solution. The time evolutions of hexagonally packed cylinders and ordered lamellae are studied. For the development of cylinders, nanoparticles first aggregate into orientationally disordered small cylinders, then these cylinders slowly grow into hexagonally packed long cylinders. For the development of ordered lamellae, nanoparticles first form a disordered structure, then grow into disordered lamellae, and at last evolve into ordered lamellae. The simulation demonstrates that addition of DHBC can effectively control the aggregation of inorganic particles and lead to formation of a variety of nanostructures.  相似文献   

5.
The synthesis of mesoporous silicon carbide by chemical vapor infiltration of dimethyl dichlorosilane into mesoporous silica SBA-15 and subsequent dissolution of the silica matrix with HF was investigated. The influence of the synthesis parameters of the composite material (SiC/SBA-15) on the final product (mesoporous SiC) was determined. Depending on the preparation conditions, materials with specific surface areas from 410 to 830 m2 g−1 and pore sizes between 2 and 10 nm with high mesopore volume (0.31-0.96 cm3 g−1) were prepared. Additionally, the thermal stability of mesoporous silicon carbide at 1573 K in an inert atmosphere (argon) was investigated, and compared to that of SBA-15 and ordered mesoporous carbon (CMK-1). Mesoporous SiC has a much higher thermal textural stability as compared to SBA-15, but a lower stability than ordered mesoporous carbon CMK-1.  相似文献   

6.
We have succeeded in isolating nanostructures from never-dried cellulose wood pulp, in sheet-form that have sub-microfibril dimensions (single to double digit Å thickness with 100’s of nm in length). A recently developed oxidation procedure by Saito and co-workers (Biomacromolecules 2006, 7:1687–1691) combined with extensive ultrasonication was used to liberate nanoscale cellulose fibrils. We show structures, as determined with atomic force microscopy, that compose the well-known cellulose microfibril, which are tenfold thinner than previous reports on nanoscale celluloses. This work provides indirect evidence in support of, and is consistent with, the hypothesis that the intersheet van der Waals bonding of the cellulose fibril is significantly weaker than the intrasheet hydrogen bonding of the cellulose microfibril. The structures are facile to isolate, contain enormous specific surface area with rich chemical functionality providing potential for numerous novel applications.  相似文献   

7.
In this study, the importance of hemicellulose content and structure in chemical pulps on the property relationships in compression molded wood pulp biocomposites is examined. Three different softwood pulps are compared; an acid sulfite dissolving grade pulp with high cellulose purity, an acid sulfite paper grade pulp and a paper grade kraft pulp, the latter two both containing higher amounts of hemicelluloses. Biocomposites based the acid sulfite pulps exhibit twice as high Young’s modulus as the composite based on paper grade kraft pulp, 11–12 and 6 GPa, respectively, and the explanation is most likely the difference in beating response of the pulps. Also the water retention value (WRV) is similarly low for the two molded sulfite pulps (0.5 g/g) as compared to the molded kraft pulp (0.9 g/g). The carbohydrate composition is determined by neutral sugar analysis and average molar masses by SEC. The cellulose supramolecular structure (cellulose fibril aggregation) is studied by solid state CP/MAS 13C-NMR and two forms of hemicellulose are assigned. During compression molding, cellulose fibril aggregation occurs to higher extent in the acid sulfite pulps as compared to the kraft pulp. In conclusion, the most important observation from this study is that the difference in hemicellulose content and structure seems to affect the aggregation behaviour and WRV of the investigated biocomposites.  相似文献   

8.
Cristobalite with ordered interstitial dual-sized mesopores was synthesized through the crystallization of silica colloidal crystals composed of monodispersed amorphous silica nanoparticles. An aqueous solution containing both a flux (Na2O) and a carbon precursor (an aqueous low-molecular weight phenolic resin) was infiltrated into the interstices of silica colloidal crystals. The organic fraction in the nanocomposite was further polymerized and subsequently carbonized in an Ar flow at 750 °C to reinforce the colloidal crystal structure. The thermal treatment resulted in the crystallization of the colloidal crystals into cristobalite while retaining the porous structure. The cristobalite-carbon nanocomposite was calcined in air to remove the carbon and create interstitial ordered mesopores in the cristobalite. The surfaces of crystalline mesoporous silica are quite different from those of various ordered mesoporous silica with amorphous frameworks; thus, the present findings will be useful for a precise understanding and control of the interfaces between the mesopores and silica networks.  相似文献   

9.
Characteristics of template formation in silica at pH < 0.1 in the presence of a surface active substance (cetyltrimethylammonium bromide or chloride) have been investigated. Depending on the acidity of the reaction medium and some other factors, the synthesis of spontaneously growing particles of templated silica at interfacial surfaces led to the formation of fibers, spirals, spheres, and other forms, most of which appeared as hexagonally ordered bodies of revolution. It is possible to detemplate these forms of silica and to transform them to mesoporous molecular sieves without destroying their structures.  相似文献   

10.
结合毛细管微模塑技术、模板技术和先驱体转化技术, 以图案化聚二甲基硅氧烷(PDMS)弹性体为模具,以氧化硅凝胶小球为模板, 以液态聚碳硅烷(PCS)为先驱体, 经过氧化硅凝胶小球图案化模板的形成, 先驱体的渗入, 模板中先驱体的交联, 弹性模具的去除, 图案化先驱体的无机化和模板的去除, 制备了图案化多孔SiC 陶瓷.研究结果表明:所制备的图案化多孔陶瓷中, 图案的尺寸受图案化PDMS 弹性模具的控制, 球形孔的孔径可由氧化硅凝胶小球来调节. 图案化陶瓷中球形孔不仅三维有序排列, 而且由于模板中小球的相互接触形成的“窗 口”使球形孔三维贯通.  相似文献   

11.
CP/MAS 13C-NMR spectroscopy in combination with spectral fitting was used to study the supermolecular structure of the cellulose fibril in spruce wood and spruce kraft pulp. During pulping, structures contributing to inaccessible surfaces in the wood cellulose are converted to the cellulose I allomorph, that is, the degree of order is increased. This increase is also accompanied by a conversion of cellulose I to cellulose I. Cellulose from wood composed of different cell types, that is, compression wood, juvenile wood, earlywood, latewood and normal wood exhibited a similar supermolecular structure. Assignments were made for signals from hemicellulose which contribute significantly to the spectral C-4 region (80–86 ppm) in kraft pulp spectra but substantially less to the corresponding region in wood spectra.  相似文献   

12.
When pine wood decayed by white- and brown-rot fungi was observed in TEM after fixation and staining with glutaraldehyde/osmium tetroxide/ uranylacetate and embedding in Spurr’s ultralow viscosity resin electron dense particles, called “osmiophilic particles,” a typical distribution for the two decay types could be observed: in white-rotted wood the particles could be found in and around the hyphae and on the lumen surface of the wood cell wall, mostly aggregated to thick clusters. During the whole course of decay the wood cell walls were free of the particles, but they were present on the corroded surfaces. In brown-rotted wood the “osmiophilic particles” also could be found in and around the hyphae, but in contrast the particles were distributed over all the wood cell wall layers from the early to late stages of decay. The distribution of the “osmiophilic particles” coincides with the place where the major cell wall degradation takes place: in white-rot the cell walls are degraded from the lumen to the middle lamella; in brown-rot a depolymerization and degradation of the carbohydrates takes place all over the wood cell wall. Since the “osmiophilic particles” can be found where the degradation takes place, it can be concluded that they are causally connected with wood decay. The fact that they also were found in, and some of them also around, hyphae grown on malt-agar or Sabouraud-dextrose-agar proves that they are produced by the fungi and cannot be degradation products. The possibility that they could be preparative artifacts can be excluded because uncolonized wood was free of “osmiophilic particles.” Since the “osmiophilic particles” are produced by the fungi and can be found in places where wood is decaying, it can be further concluded that they are a fungal agent that is involved in wood degradation, probably fungal enzymes. The observation that the large “osmiophilic particles,” which may have a size of up to 20 nm, are composed of globular subunits of a diameter of 2—3 nm also speaks for their enzymatic nature. To find out which type of enzyme they might be, the white-rot fungusTrametes hirsuta was grown on wood pulp with 7% lignin, on delignified wood pulp containing cellulose and hemicellulose, and on filterpaper (pure cellulose). The hyphae on wood pulp containing 7% lignin were surrounded by thick sheaths of “osmiophilic particles,” whereas with the hyphae grown on delignified wood pulp and pure cellulose only a few particles could be found. This makes it clear that the production of the “osmiophilic particles” is induced by lignin.  相似文献   

13.
Well‐ordered mesoporous Pt nanoparticles (MPNs) with uniform olive shapes are synthesized by using two‐dimensional (2D) hexagonal mesoporous silica (SBA‐15) as a hard template. The average particle sizes are controllable in the range of 150 to 230 nm by changing the reduction time. Low‐angle XRD profiles for the obtained MPNs show three distinct peaks assignable to the (10), (11), and (20) planes of a highly ordered 2D hexagonal symmetry. From high‐magnification SEM images, periodically arranged Pt nanowires are observed clearly, which are a negative replica of the 2D hexagonally ordered mesoporous silica (SBA‐15). Furthermore, the single crystallinity of the Pt fcc structure coherently extends over the whole particles. As a result of such unique character as well as high surface area, the obtained MPNs show distinctly enhanced electrocatalytic properties for methanol oxidation reaction compared to other Pt samples, such as Pt black.  相似文献   

14.
Metallic rods with submicron diameters that contain disklike ferromagnetic sections self-assemble into highly stable, hexagonally close-packed arrays of rods. The rods were fabricated by electrodeposition in porous alumina membranes and comprised alternating sections of gold and nickel. The thicknesses of the ferromagnetic nickel sections were approximately one-half the diameter of the rods (400 nm); this geometry orients the "easy" axis of magnetization perpendicular to the long axis of the rod. After magnetization of the rods with a rare-earth magnet, followed by sonication of the suspension, the rods spontaneously assembled into three-dimensional (3D) bundles that, on average, contained 15-30 rods. A macroscopic model of the rods suggests that the most stable orientation of the magnetic dipoles for rods in a defect-free, hexagonally close-packed arrangement is in concentric rings with the dipoles oriented head-to-tail. This configuration minimizes the energy of the bundle and does not generate a net dipole for the structure. This work provides a simple demonstration that magnetic interactions between ferromagnetic objects can direct and stabilize the formation of ordered, 3D structures by self-assembly.  相似文献   

15.
Mercerized wood cellulose was oxidized by 4-acetamide-TEMPO/NaClO/NaClO2 system at 60 °C and pH 4.8 for 1–5 days. Mostly individual nanocrystals 4–7 nm in width and 100–200 nm in length were obtained by ultrasonication of the oxidized product in water. The nanocrystals had the cellulose II structure, and carboxylate contents of 2.0–2.4 mmol/g, indicating that these carboxylate groups were selectively formed on the cellulose II crystallite surfaces in mercerized cellulose. Moreover, the original wood cellulose and mercerized cellulose were acid-hydrolyzed, and then subjected to the TEMPO-mediated oxidation under the same conditions at pH 4.8 to prepare reference samples. TEM images, light transmittance and rheological properties of water dispersions showed that the nanocrystals prepared from mercerized cellulose by the TEMPO oxidation and sonication in water had the highest dispersibility of individual nanocrystals with less amounts of bundles in water, resulting from the highest carboxylate contents.  相似文献   

16.
The quintessential form of cellulose in wood consists of microfibrils that have high aspect ratio crystalline domains embedded within an amorphous cellulose domain. In this study, we apply united-atom molecular dynamics simulations to quantify changes in different morphologies of cellulose. We compare the structure of crystalline cellulose with paracrystalline and amorphous phases that are both obtained by high temperature equilibration followed by quenching at room temperature. Our study reveals that the paracrystalline phase may be an intermediate, kinetically arrested phase formed upon amorphisation of crystalline cellulose. The quenched structures yield isotropic amorphous polymer domains consistent with experimental results, thereby validating a new computational protocol for achieving amorphous cellulose structure. The non-crystalline cellulose compared to crystalline structure is characterized by a dramatic decrease in elastic modulus, thermal expansion coefficient, bond energies, and number of hydrogen bonds. Analysis of the lattice parameters shows that Iβ cellulose undergoes a phase transition into high-temperature phase in the range of 450–550 K. The mechanisms of the phase transition elucidated here present an atomistic view of the temperature dependent dynamic structure and mechanical properties of cellulose. The paracrystalline state of cellulose exhibits intermediate mechanical properties, between crystalline and amorphous phases, that can be assigned to the physical properties of the interphase regions between crystalline and amorphous cellulose in wood microfibrils. Our results suggest an atomistic structural view of amorphous cellulose which is consistent with experimental data available up to date and provide a basis for future multi-scale models for wood microfibrils and all-cellulose nanocomposites.  相似文献   

17.
A method is presented which enables analysis of lignin precipitated on the surface of kraft pulp fibers. As experimental input, high-resolution atomic force microscopy phase images of the fiber surfaces have been recorded in tapping mode. A digital image analysis procedure—based on the watershed algorithm—is applied to distinguish between cellulose fibrils and the precipitated lignin. In this way, size distributions for the diameter of lignin precipitates on pulp fiber surfaces can be obtained. In an initial application of the method, three softwood kraft pulps were analyzed: a black liquor cook with a very high content of precipitated lignin, a bleached pulp where nearly no precipitated lignin is visible and an unbleached industrial pulp. The proposed method is suggested as an appropriate tool to investigate the kinetics of lignin precipitation and the structure of lignin precipitates in pulping and bleaching.  相似文献   

18.
A repeating template method is presented for the synthesis of mesoporous metals with 2D hexagonal mesostructures. First, a silica replica (i.e., silica nanorods arranged periodically) is prepared by using 2D hexagonally ordered mesoporous carbon as the template. After that, the obtained silica replica is used as the second template for the preparation of mesoporous ruthenium. After the ruthenium species are introduced into the silica replica, the ruthenium species are then reduced by a vapor‐infiltration method by using the reducing agent dimethylamine borane. After the ruthenium deposition, the silica is chemically removed. Analysis by transmission and scanning electron microscopies, a nitrogen‐adsorption–desorption isotherm, and small‐angle X‐ray scattering revealed that the mesoporous ruthenium had a 2D hexagonal mesostructure, although the mesostructural ordering is decreased compared to that of the original mesoporous carbon template. This method is widely applicable to other metal systems. By changing the metal species introduced into the silica replica, several mesoporous metals (palladium and platinum) can be synthesized. Ordered mesoporous ruthenium and palladium, which are not easily attainable by the soft‐templating methods, can be prepared. This study has overcome the composition variation limitations of the soft‐templating method.  相似文献   

19.
On the determination of crystallinity and cellulose content in plant fibres   总被引:2,自引:0,他引:2  
A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent determination of the cellulose content. Crystallinity determinations were based on X-ray powder diffraction methods using side-loaded samples in reflection (Bragg-Brentano) mode. Rietveld refinements based on the recently published crystal structure of cellulose Iβ followed by integration of the crystalline and amorphous (background) parts were performed. This was shown to be straightforward to use and in many ways advantageous to traditional crystallinity determinations using the Segal or the Ruland–Vonk methods. The determined cellulose crystallinities were 90–100 g/100 g cellulose in plant-based fibres and 60–70 g/100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production.  相似文献   

20.
Bacterial cellulose (BC) hydrated membranes present nanometric reticulated structure that can be used as a template in the preparation of new organic–inorganic hybrids. BC–silica hybrids were prepared from BC membranes and tetraethoxysilane, (TEOS) at neutral pH conditions at room temperature. Macroscopically homogeneous membranes were obtained containing up to 66 wt.% of silica spheres, 20–30 nm diameter. Scanning electron micrographs clearly show the silica spheres attached to cellulose microfibrils. By removing the cellulose, the silica spheres can be easily recovered. The new hybrids are stable up to 300 °C and display a broad emission band under UV excitation assigned to oxygen-related defects at the silica particles surface. Emission color can be tuned by changing the excitation wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号