首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traveling magnetic field is one of effective tools for controlling phase change processes in metals. A better understanding of electromagnetic impact in such applications can help to improve and simplify technological processes. In this paper, numerical and experimental study of the electromagnetic force generated by traveling magnetic field and its ability to control liquid gallium flow and, consequently, affect the characteristics of solidification and melting processes are evaluated. Three-dimensional numerical model for calculating the magnetic field distribution and electromagnetic force acting on liquid gallium in a laboratory-size rectangular cavity was analyzed. Specific values of the TMF impact were chosen for the cases of interest in order to use such impact in our further work with horizontal gallium solidification process. The traveling magnetic field inductor was designed and built for making appropriate measurements and validating calculations. The analysis was focused on the electromagnetic force and the obtained velocity field. The experimental setup included an ultrasonic Doppler velocimeter for noninvasive measurements of the velocities of liquid metal flow. The comparison of computations with the experiments has shown a good agreement.  相似文献   

2.
An experimental and numerical study has been performed for oil–water core-annular flow in a horizontal pipe, with a special focus on the effect of the presence of the turbulence in the water annulus. An experimental set-up was built and the obtained experimental results were used for the validation of numerical simulations that were carried out as well. The oil density was considerably lower than the water density, which leads to a rather eccentric oil core. The numerical simulations were carried out for different time dependent, fully 3D conditions. Only when a turbulence model is applied (instead of assuming laminar flow) the agreement between the predictions and the experiments is reasonably good.  相似文献   

3.
A volume-filtered Euler–Lagrange large eddy simulation methodology is used to predict the physics of turbulent liquid–solid slurry flow through a horizontal periodic pipe. A dynamic Smagorinsky model based on Lagrangian averaging is employed to account for the sub-filter scale effects in the liquid phase. A fully conservative immersed boundary method is used to account for the pipe geometry on a uniform cartesian grid. The liquid and solid phases are coupled through volume fraction and momentum exchange terms. Particle–particle and particle–wall collisions are modeled using a soft-sphere approach. Three simulations are performed by varying the superficial liquid velocity to be consistent with the experimental data by Dahl et al. (2003). Depending on the liquid flow rate, a particle bed can form and develop different patterns, which are discussed in light of regime diagrams proposed in the literature. The fluctuation in the height of the liquid-bed interface is characterized to understand the space and time evolution of these patterns. Statistics of engineering interest such as mean velocity, mean concentration, and mean streamwise pressure gradient driving the flow are extracted from the numerical simulations and presented. Sand hold-up calculated from the simulation results suggest that this computational strategy is capable of predicting critical deposition velocity.  相似文献   

4.
We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pressure distributions along the wall of the riser were measured. Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler–Euler approach. A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models.  相似文献   

5.
Natural convection in a liquid metal heated locally at its upper surface and affected by a vertical magnetic field is investigated both experimentally and numerically. The experiments are conducted in a cylindrical test cell of large aspect ratio which is typical for application. The cell is filled with the liquid alloy GaInSn in eutectic composition. Temperature and velocity are measured using thermocouples and an electric potential probe, respectively. In the absence of the magnetic field the experimental results indicate a dependence of the Nusselt number on the Rayleigh number according to the law NuRa0.191. The particular value of the scaling exponent is in excellent agreement with the prediction of a scaling analysis for laminar, boundary layer-type flow in a low-Prandtl number fluid. Furthermore the experiments demonstrate that the Nusselt number and therefore the convective heat losses can be decreased by about 20% when a magnetic field of moderate strength (B=0.1 T) is present. The numerical simulations solve the Boussinesq equations in an axisymmetric geometry using a finite element method. The results of the simulations are both quantitatively and qualitatively in good agreement with the experimental observations. Deviations are attributed to the three-dimensional characteristics of the flow.  相似文献   

6.
The effect of magnetic field strength and orientation on two types of electromagnetically influenced turbulent flows was studied numerically under the Reynolds averaged Navier–Stokes (RANS) framework. Previous work (Wilson et al., 2014) used an electromagnetically extended linear eddy-viscosity model, whilst the current paper focuses on the performance of a more advanced Reynolds stress transport type model both with and without electromagnetic modifications proposed by Kenjereš et al. (2004). First, a fully-developed 2D channel flow is considered with a magnetic field imposed in either the wall-normal or streamwise direction. Both forms of the RSM gave good agreement with the DNS data for the wall-normal magnetic field across the range of Hartmann numbers with the additional electromagnetic terms providing a small, but noticeable, difference. For the streamwise magnetic field, where electromagnetic influence is only through the turbulence, the electromagnetically extended RSM performed well at moderate Hartmann numbers but returned laminar flow at the highest Hartmann number considered, contrary to the DNS. The RSM results were, however, significantly better than the previous eddy-viscosity model predictions. The second case is that of unsteady 3D Rayleigh–Bénard convection with a magnetic field imposed in either a horizontal or vertical direction. Results revealed that a significant reorganization of the flow structures is predicted to occur. For a vertically oriented magnetic field, the plume structures increase in number and become thinner and elongated along the magnetic field lines, leading to an increase in thermal mixing within the core in agreement with Hanjalić and Kenjereš (2000). With a horizontal magnetic field, the structures become two-dimensional and a striking realignment of the roll cells’ axes with the magnetic field lines occurs. The results demonstrate the capability of the Reynolds stress transport approach in modelling MHD flows that are relevant to industry and offer potential for those wishing to control levels of turbulence, heat transfer or concentration without recourse to mechanical means.  相似文献   

7.
磁场对液态金属流的制动效应   总被引:1,自引:0,他引:1  
荣升 《力学学报》1996,28(1):40-45
研究在静磁场作用下;连铸坯中液态金属的流动,建立了二维数学模型并考虑了湍流的影响.采用数值分析方法分析了磁场对液态金属流股的制动效应.计算结果说明静磁场可以有效地减小流股速度并使其分散,同时使上升到液态金属液面的反转流减弱.随着哈特曼数增高和雷诺数的减小,磁场的制动效应增强.  相似文献   

8.
磁场对液态金属流的制动效应   总被引:1,自引:0,他引:1  
研究在静磁场作用下;连铸坯中液态金属的流动,建立了二维数学模型并考虑了湍流的影响.采用数值分析方法分析了磁场对液态金属流股的制动效应.计算结果说明静磁场可以有效地减小流股速度并使其分散,同时使上升到液态金属液面的反转流减弱.随着哈特曼数增高和雷诺数的减小,磁场的制动效应增强.  相似文献   

9.
The paper considers an analysis of a liquid metal flow, occurring in the horizontal belt strip casting process. The liquid metal flows over a moving copper belt with a growing solidifying phase beneath the melt. The effect of applying a transverse magnetic field is investigated. A set of three-dimensional shallow water equations is derived. Supercritical flow is assumed and the shallow water equations are solved numerically using a shock-capturing method, which automatically takes care of the possibility of oblique hydraulic jumps.It is shown that non-uniform conditions introduced in the feeding region give a pattern of steady hydraulic jumps, which propagate downstream and are reflected at the sidewalls. The effect of the magnetic field is to brake the flow and damp the standing hydraulic jump pattern. Different feeding methods are compared and it is shown that the magnetic field erases the initial differences in liquid distribution using different feeding techniques.  相似文献   

10.
Computational fluid dynamics simulations employing eddy-viscosity turbulence models remain the baseline numerical tool in the aerospace industry, mainly due to their numerical stability and computational efficiency. However, many industrially relevant cases require a level of accuracy that is not routinely achieved by global turbulence models. The simulation of leading-edge vortices shed at low aspect ratio wings is one such class of flows that remains a challenge for turbulence modelling. A local approach is proposed in which a parametrised eddy-viscosity turbulence model is calibrated using experimental results of configurations and flow conditions similar to the one being analysed. In this paper, the Spalart–Allmaras one-equation model is enhanced with additional source terms, which are exclusively active in the vortex field. An automatic optimisation procedure with experimental data as reference is then applied. The resulting optimised model improves the eddy viscosity distribution for a limited but relevant range of configurations and flow conditions.  相似文献   

11.
郝乐  陈龙  倪明玖 《力学学报》2020,52(6):1645-1654
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.   相似文献   

12.
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.  相似文献   

13.
This paper presents a numerical simulation of the flow inside a cyclone separator at high particle loads. The gas and gas–particle flows were analyzed using a commercial computational fluid dynamics code. The turbulence effects inside the separator were modeled using the Reynolds stress model. The two phase gas–solid particles flow was modeled using a hybrid Euler–Lagrange approach, which accounts for the four-way coupling between phases. The simulations were performed for three inlet velocities of the gaseous phase and several cyclone mass particle loadings. Moreover, the influences of several submodel parameters on the calculated results were investigated. The obtained results were compared against experimental data collected at the in-house experimental rig. The cyclone pressure drop evaluated numerically underpredicts the measured values. The possible reason of this discrepancies was disused.  相似文献   

14.
Problems of the deceleration of a supersonic conducting flow by a magnetic field are investigated. A conducting gas flow in a circular tube is considered in the presence of an axisymmetric magnetic field induced by a unit current loop or solenoid of finite length. The analysis is carried out on the basis of both the Euler equations (inviscid gas) and the complete system of Navier-Stokes equations for laminar viscous gas flow and turbulent flow using a one-parameter turbulence model. The numerical simulation is based on an implicit relaxation finite-difference scheme which is a modification of the Godunov method. The total pressure losses are determined for various values of the magnetohydrodynamic (MHD) interaction, the initial Mach number, and different magnetic field geometries and it is shown that the irreversible losses are significant in MHD supersonic flow deceleration.  相似文献   

15.
Ascent of a large-scale thermal in a standard atmosphere is calculated with the use of the Reynolds equations and the k model of turbulence, which takes into account temperature inhomogeneity and vorticity of the flow, and the Euler equations. Results of numerical calculations of a flow examined experimentally are presented. Gas-dynamic and turbulent flow parameters obtained in calculations and experiments are compared.  相似文献   

16.
There is a continuous need for an updated series of numerical benchmarks dealing with various aspects of the magnetohydrodynamics (MHD) phenomena (i.e. interactions of the flow of an electrically conducting fluid and an externally imposed magnetic field). The focus of the present study is numerical magnetohydrodynamics (MHD) where we have performed an extensive series of simulations for generic configurations, including: (i) a laminar conjugate MHD flow in a duct with varied electrical conductivity of the walls, (ii) a back-step flow, (iii) a multiphase cavity flow, (iv) a rising bubble in liquid metal and (v) a turbulent conjugate MHD flow in a duct with varied electrical conductivity of surrounding walls. All considered benchmark situations are for the one-way coupled MHD approach, where the induced magnetic field is negligible. The governing equations describing the one-way coupled MHD phenomena are numerically implemented in the open-source code OpenFOAM. The novel elements of the numerical algorithm include fully-conservative forms of the discretized Lorentz force in the momentum equation and divergence-free current density, the conjugate MHD (coupling of the wall/fluid domains), the multi-phase MHD, and, finally, the MHD turbulence. The multi-phase phenomena are simulated with the Volume of Fluid (VOF) approach, whereas the MHD turbulence is simulated with the dynamic Large-Eddy Simulation (LES) method. For all considered benchmark cases, a very good agreement is obtained with available analytical solutions and other numerical results in the literature. The presented extensive numerical benchmarks are expected to be potentially useful for developers of the numerical codes used to simulate various types of the complex MHD phenomena.  相似文献   

17.
A numerical algorithm to study the boundary‐value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co‐ordinate system. The convergence of the finite‐difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka–Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two‐dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383–398), we model analytically the Hartmann layers present along the walls perpendicular to the magnetic field. This modeling, which yields boundary conditions for the core flow without any meshing of the thin layers, is quite accurate when Hartmann layers are stable. The numerical results are in fairly good agreement with the experimental data. They namely reveal how the heat flux and the fluid flow organization depend on the magnetic field.  相似文献   

19.
In this work, a study involving magnetic field actuation over reentry flows in thermochemical non-equilibrium is performed. The Euler and Navier–Stokes equations are studied. The proposed numerical algorithm is centred and second-order accurate. The hypersonic flow around a blunt body is simulated. Three time integration methods are tested. The reactive simulations involve Earth atmosphere of five species. The work of Gaitonde is the reference to couple the fluid dynamics and Maxwell equations of electromagnetism. The results have indicated that the Maciel scheme, using the Mavriplis dissipation model, yields the best prediction of the stagnation pressure.  相似文献   

20.
Numerical and experimental studies of the dynamics of a cavitating bubble near a resilient metal surface were performed. To augment the experimental flow visualizations of a collapsing bubble, numerical simulations were conducted to more thoroughly identify the collapse dynamics and analyze the flow. A bubble collapse was captured using a high-speed camera and back illumination. The metal sample was made of pure aluminum placed near a collapsing cavitation bubble at various distances from the metal surface. Width, depth, and volume of the induced material deformations were measured using an optical microscope and a three-dimensional profilometer and then compared against existing experimental data from the literature. The cavitating bubble’s dynamics and the related flow were simulated numerically using the open source finite volume based flow solver CavitatingFOAM. This code solved the Navier–Stokes equations for compressible two-phase flows using an Euler–Euler approach, including the barotropic equations of state. Bubble shapes, collapse times, and obtained damage parameters were compared to experimental observations. Impact velocities, pressures, shear rates, and various flow phenomena were discussed, providing broad insight into bubble dynamics and the induced damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号