首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Elemental phosphorus displays an impressive number of allotropes with highly diverse chemical and physical properties. White phosphorus has now been filled into single‐wall carbon nanotubes (SWCNTs) from the liquid and thereby stabilized against the highly exothermic reaction with atmospheric oxygen. The encapsulated tetraphosphorus molecules were visualized with transmission electron microscopy, but found to convert readily into chain structures inside the SWCNT “nanoreactors”. The energies of the possible chain structures were determined computationally, highlighting a delicate balance between the extent of polymerization and the SWCNT diameter. Experimentally, a single‐stranded zig‐zag chain of phosphorus atoms was observed, which is the lowest energy structure at small confinement diameters. These one‐dimensional chains provide a glimpse into the very first steps of the transformation from white to red phosphorus.  相似文献   

10.
11.
The encapsulation of viologen derivatives into metallic single‐walled carbon nanotubes (SWNTs) results in the opening of a band gap, making the SWNTs semiconducting. Raman spectroscopy, thermogravimetric analysis, and aberration‐corrected high‐resolution transmission electron microscopy confirm the encapsulation process. Through the fabrication of field‐effect transistor devices, the change of the electronic structure of the tubes from metallic to semiconducting upon the encapsulation is confirmed. The opening of a gap in the band structure of the tubes was not detected in supramolecular controls.  相似文献   

12.
13.
14.
15.
16.
17.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   

18.
Controlled nitrogen‐doping is a powerful methodology to modify the properties of carbon nanostructures and produce functional materials for electrocatalysis, energy conversion and storage, and sensing, among others. Herein, we report a wall‐ and hybridisation‐selective synthetic methodology to produce double‐walled carbon nanotubes with an inner tube doped exclusively with graphitic sp2‐nitrogen atoms. Our measurements shed light on the fundamental properties of nitrogen‐doped nanocarbons opening the door for developing their potential applications.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号