首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The heat transfer and the pressure drop characteristics of turbulent flow of air through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and with wire-coil inserts have been studied experimentally. Circular duct has also been used. The transverse ribs in combination with wire-coil inserts have been found to perform better than either ribs or wire-coil inserts acting alone. The flow friction and thermal characteristics are governed by duct aspect ratio, coil helix angle and wire diameter of the coil, rib height and rib spacing, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. It has been found that on the basis of constant pumping power, up to 35% heat duty increase occurs for the combined ribs and wire-coil inserts case compared to the individual ribs and wire-coil inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to 20% for the combined enhancement geometry than the individual enhancement geometries.  相似文献   

2.
The heat transfer and the pressure drop characteristics of laminar flow of viscous oil (195 < Pr < 525) through rectangular and square ducts with internal transverse rib turbulators on two opposite surfaces of the ducts and with wire coil inserts have been studied experimentally. Circular duct has also been used. The transverse ribs in combination with wire coil inserts have been found to perform better than either ribs or wire coil inserts acting alone. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, coil helix angle and wire diameter of the coil, rib height and rib spacing, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of constant pumping power, up to fifty per cent heat duty increase occurs for the combined ribs and wire coil inserts case compared to the individual ribs and wire coil inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to forty per cent for the combined enhancement geometry than the individual enhancement geometries.  相似文献   

3.
A generally applicable finite element procedure for the prediction of laminar mixed convection in horizontal straight ducts of arbitrary cross-section is presented. The procedure, based on the parabolized simplification of the complete Navier-Stokes equations and on the Boussinesq approximation of the buoyancy terms, is validated through comparisons of computed results with the available literature data for mixed convection in the entrance region of a rectangular duct of aspect ratio a=2. Uniform heating at different sides is considered as the thermal boundary condition, although the proposed formulation allows specification of most thermal boundary conditions of practical interest.  相似文献   

4.
Reynolds averaged simulation of flow and heat transfer in ribbed ducts   总被引:6,自引:0,他引:6  
The accuracy of modern eddy-viscosity type turbulence models in predicting turbulent flows and heat transfer in complex passages is investigated. The particular geometries of interest here are those related to turbine blade cooling systems. This paper presents numerical data from the calculation of the turbulent flow field and heat transfer in two-dimensional (2D) cavities and three-dimensional (3D) ribbed ducts. It is found that heat transfer predictions obtained using the v2f turbulence model for the 2D cavity are in good agreement with experimental data. However, there is only fair agreement with experimental data for the 3D ribbed duct. On the wall of the duct where ribs exist, predicted heat transfer agrees well with experimental data for all configurations (different streamwise rib spacing and the cavity depth) considered in this paper. But heat transfer predictions on the smooth-side wall do not concur with the experimental data. Evidence is provided that this is mainly due to the presence of strong secondary flow structures which might not be properly simulated with turbulence models based on eddy viscosity.  相似文献   

5.
Numerous pressure drop correlations for microchannels have been proposed; most of them can be classified as either a homogeneous flow model (HFM) or a separated flow model (SFM). However, the predictions of these correlations have not been compared directly because they were developed in experiments conducted under a range of conditions, including channel shape, the number of channels, channel material and the working fluid. In this study, single rectangular microchannels with different aspect ratios and hydraulic diameters were fabricated in a photosensitive glass. Adiabatic water-liquid and Nitrogen-gas two-phase flow experiments were conducted using liquid superficial velocities of 0.06–1.0 m/s, gas superficial velocities of 0.06–72 m/s and hydraulic diameters of 141, 143, 304, 322 and 490 μm. A pressure drop in microchannels was directly measured through embedded ports. The flow pattern was visualized using a high-speed camera and a long-distance microscope. A two-phase pressure drop in the microchannel was highly related to the flow pattern. Data were used to assess seven different HFM viscosity models and ten SFM correlations, and new correlations based on flow patterns were proposed for both HFMs and SFMs.  相似文献   

6.
Numerous pressure drop correlations for microchannels have been proposed; most of them can be classified as either a homogeneous flow model (HFM) or a separated flow model (SFM). However, the predictions of these correlations have not been compared directly because they were developed in experiments conducted under a range of conditions, including channel shape, the number of channels, channel material and the working fluid. In this study, single rectangular microchannels with different aspect ratios and hydraulic diameters were fabricated in a photosensitive glass. Adiabatic water-liquid and Nitrogen-gas two-phase flow experiments were conducted using liquid superficial velocities of 0.06–1.0 m/s, gas superficial velocities of 0.06–72 m/s and hydraulic diameters of 141, 143, 304, 322 and 490 μm. A pressure drop in microchannels was directly measured through embedded ports. The flow pattern was visualized using a high-speed camera and a long-distance microscope. A two-phase pressure drop in the microchannel was highly related to the flow pattern. Data were used to assess seven different HFM viscosity models and ten SFM correlations, and new correlations based on flow patterns were proposed for both HFMs and SFMs.  相似文献   

7.
The aim of the present study is the numerical investigation of the shear-thinning and shear-thickening effects of flow in a T-junction of rectangular ducts. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite volume method with collocated arrangement of variables. The code enables multi-block computations in domains with multiple apertures, thus coping with the two-block, two-outlet layout of the current 3D computational domain. The shear-thinning and shear-thickening behaviours of the flow are covered by changing the index n of the Power-Law model within a range from 0.20 to 1.25, and the subsequent effects are investigated by means of different flow parameters namely the Reynolds (Re) number and the boundary conditions at the outlets. Results exhibit the extent of the effect of the Re number on the velocity profiles at different positions in the domain for both Newtonian and non-Newtonian cases. Similarly, the trend of the effect of shear-thinning and shear-thickening behaviours on the flow rate ratio between inlet and outlets, in the case of equal pressure imposed on outlets, is shown.  相似文献   

8.
This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52–5.78 W/m2 K) at 100 W for S = 5–12 mm. The ha is very small (1.12–1.8 W/m2 K) at 100 W for 2–4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2–4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8–10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is ?0.32 %.  相似文献   

9.
10.
Experimental results are presented for the pressure loss in transitions between square and rectangular ducts where the two ends have the same cross-sectional area. The aspect ratios at the rectangular end ranged from 0.3 to 0.625, and the transition length from 1 to 2 times the hydraulic diameter. Reynolds numbers ranged from 50 000 to 125 000. The pressure drop may be divided into components arising from friction and velocity profile distortion. The friction component, which may be evaluated by normal pipe flow methods, accounts for the observed variation with Reynolds number. The velocity profile component increases as the aspect ratio of the rectangular end falls, and is significantly higher for rectangular to square than for square to rectangular transitions. There is an optimum length to hydraulic diameter ratio, for which the pressure loss is a minimum; it has not been found exactly, but is less than 2 and probably below 1.  相似文献   

11.
12.
The local heat transfer and pressure drop characteristics of developing turbulent flows of air in three stationary ribbed square ducts have been investigated experimentally. These are: ribbed square duct with constant cross-section (straight duct), ribbed divergent square duct and ribbed convergent square duct. The convergent/divergent duct has an inclination angle of 1°. The measurement was conducted within the range of Reynolds numbers from 10 000 to 77 000. The heat transfer performance of the divergent/convergent ducts is compared with the ribbed straight duct under three constraints: identical mass flow rate, identical pumping power and identical pressure drop. Because of the streamwise flow acceleration or deceleration, the local heat transfer characteristics of the divergent and convergent ducts are quite different from those of the straight duct. In the straight duct, the fluid flow and heat transfer become fully developed after 2–3 ribs, while in the divergent and convergent ducts there is no such trend. The comparison shows that among the three ducts, the divergent duct has the highest heat transfer performance, the convergent duct has the lowest, while the straight duct locates somewhere in between.  相似文献   

13.
Increasing attention has been focused on carbon dioxide (CO2) heat pump system where the temperature level is rather low, while the operating pressure is rather high. In this system, the density difference between vapor and liquid becomes rather small, which significantly affects flow patterns. Low surface tension and latent heat also have significant influence on two-phase flow patterns and heat transfer. This paper describes experimental and numerical investigation on flow patterns and heat transfer characteristics of boiling flow CO2 at high pressure in horizontal small-bore tubes ranging from 1.0 mm to 3.0 mm I.D. Even though the density difference is rather small at high pressure, phase stratification takes place, which leads to the intermittent dryout at the upper wall. So far developed discrete bubble model by the authors for vertical flows is modified so as to include horizontal flow mechanisms. The predicted flow patterns with this new model agree on the whole with the experimental observation.  相似文献   

14.
The heat transfer and the pressure drop characteristics of turbulent flow of air (10,000 < Re < 100,000) through rectangular and square ducts with combined internal axial corrugations on all the surfaces of the ducts and with twisted-tape inserts with and without oblique teeth have been studied experimentally. The axial corrugations in combination with twisted-tapes of all types with oblique teeth have been found to perform better than those without oblique teeth in combination with axial corrugations. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, corrugation angle, corrugation pitch, twist ratio, space ratio, length, tooth horizontal length and tooth angle of the twisted-tape, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of constant pumping power, up to 55% heat duty increase occurs for the combined axial corrugation and regularly spaced twisted-tape elements inserts with oblique teeth case compared to without oblique teeth twisted-tape inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to 47% for the combined enhancement geometry than the individual enhancement geometries. However, full-length and short-length twisted-tapes with oblique teeth in combination with axial corrugations show only marginal improvements over the twisted-tapes without oblique teeth.  相似文献   

15.
A theory of large lossless waves with two fluids in horizontal closed channels of arbitrary cross-section is developed. The dynamic conditions for infinitesimally small disturbances is derived from this theory and it is shown that the dynamic condition for waves of finite magnitude is in agreement with Long's (1956) first order estimate for small waves in channels of rectangular cross-section. It therefore appears probable that an adequately accurate dynamic condition is available for such waves of all sizes. Results from the theory are used to quantitatively explain experimental results by Wallis & Dobson (1973) for the onset of slugging in horizontal channels and by Leach & Thompson (1975) for the counter-current discharge of fluids along a horizontal pipes between closed tanks. In both cases an influence of the ratio of the densities of the phases upon the usually accepted Froude number, which already contains density correction factors, is found. Transfer of miscible unstably stratified fluids through each other in vertical ducts is found to be described by a turbulent diffusion process which is controlled by the rate of energy dissipation and the duct diameter. The process is therefore quite different to that in horizontal ducts.  相似文献   

16.
17.
18.
Bifurcation condition of crack pattern in the periodic rectangular array plays an important role in determining the final failure pattern of rock material. An approximation for the critical crack size/spacing ratio is established for a uniformly growing periodic rectangular array yields to a non-uniform growing pattern of crack growth. Numerical results show that the critical crack size/spacing ratio λcr depends on the number of cracks, the crack spacing, the perpendicular distance between two adjacent rows, as well as the loading conditions. In general, λcr increases with the number of lines. It is observed that the critical crack size/spacing ratio λcr for the periodic rectangular array decreases with an increase in the perpendicular distance between two adjacent rows. It is clear that the critical crack size/spacing ratio λcr for the periodic rectangular array under shear stress increases with increasing the crack spacing.  相似文献   

19.
Experimental measurements of flow patterns for gas-liquid flow in inclined pipes are reported. The results compare well with a recently published theory for the prediction of flow patterns in horizontal and inclined pipes (Taitel & Dukler 1976).  相似文献   

20.
The steady-state advective flow in a long horizontal rectangular channel with rigid adiabatic boundaries in the presence of a uniform longitudinal pressure gradient is investigated. The stability of this flow with respect to perturbations of various types is studied. The dependence of the critical Rayleigh number on the Prandtl number is found for various aspect ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号