首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
4.
Water‐borne phosphine‐functionalized core‐cross‐linked micelles ( CCM ) consisting of a hydrophobic core and a hydrophilic shell were obtained as stable latexes by reversible addition–fragmentation chain transfer (RAFT) in water in a one‐pot, three‐step process. Initial homogeneous aqueous‐phase copolymerization of methacrylic acid (MAA) and poly(ethylene oxide) methyl ether methacrylate (PEOMA) is followed by copolymerization of styrene (S) and 4‐diphenylphosphinostyrene (DPPS), yielding P(MAA‐co‐PEOMA)‐b‐P(S‐co‐DPPS) amphiphilic block copolymer micelles ( M ) by polymerization‐induced self‐assembly (PISA), and final micellar cross‐linking with a mixture of S and diethylene glycol dimethacrylate. The CCM were characterized by dynamic light scattering and NMR spectroscopy to evaluate size, dispersity, stability, and the swelling ability of various organic substrates. Coordination of [Rh(acac)(CO)2] (acac=acetylacetonate) to the core‐confined phosphine groups was rapid and quantitative. The CCM and M latexes were then used, in combination with [Rh(acac)(CO)2], to catalyze the aqueous biphasic hydroformylation of 1‐octene, in which they showed high activity, recyclability, protection of the activated Rh center by the polymer scaffold, and low Rh leaching. The CCM latex gave slightly lower catalytic activity but significantly less Rh leaching than the M latex. A control experiment conducted in the presence of the sulfoxantphos ligand pointed to the action of the CCM as catalytic nanoreactors with substrate and product transport into and out of the polymer core, rather than as a surfactant in interfacial catalysis.  相似文献   

5.
6.
Multiwalled carbon nanotube (MWCNT)‐coated polystyrene (PS) beads have been prepared by dispersion polymerization followed by a layer‐by‐layer self‐assembly method. The concentration of carboxylic acid groups on the MWCNTs increased from 1.81 × 1021 to 3.43 × 1022 COO per g as the treatment time was increased from 3 to 9 h. The sulfonated polystyrene (SPS) beads changed from being negatively charged to positively charged when the cationic polyelectrolyte was self‐assembled on their surface. The surface morphology of the adsorbed polyelectrolyte was smooth without any aggregation and the thickness of the polyelectrolyte coating on the SPS beads was ≈0.6 µm. The electrical conductivity and resistance of the MWCNT‐coated SPS beads were measured to be 4.0 × 10−2 S · cm−1 and 12.8 Ω at a volume fraction of 91%, respectively.

  相似文献   


7.
8.
9.
Thermoresponsive polymers change their physical properties as the temperature is changed and have found extensive use in a number of fields, especially in tissue engineering and in the development of drug delivery systems. The synthesis of a novel core–shell nanogel composed of N‐isopropylacrylamide and sulfobetaine by reversible addition fragmentation chain transfer polymerization is reported. The core–shell architecture of the nanogels is confirmed using energy dispersive X‐ray spectroscopy in scanning transmission electron microscopy. These nanogels exhibit dual thermoresponsive behavior, i.e., the core of the nanogel exhibits lower critical solution temperature, while the shell displays upper critical solution temperature behavior. Transition temperatures can be easily tuned by changing the molecular weight of the constituent polymer. These nanogels can be efficiently used in temperature‐triggered delivery of therapeutic proteins and drugs.  相似文献   

10.
11.
The first examples of core–shell porous molecular crystals are described. The physical properties of the core–shell crystals, such as surface hydrophobicity, CO2 /CH4 selectivity, are controlled by the chemical composition of the shell. This shows that porous core–shell molecular crystals can exhibit synergistic properties that out‐perform materials built from the individual, constituent molecules.  相似文献   

12.
13.
14.
The selected‐control preparation of uniform core–shell and yolk–shell architectures, which combine the multiple functions of a superparamagnetic iron oxide (SPIO) core and europium‐doped yttrium oxide (Y2O3:Eu) shell in a single material with tunable fluorescence and magnetic properties, has been successfully achieved by controlling the heat‐treatment conditions. Furthermore, the shell thickness and interior cavity of SPIO@Y2O3:Eu core–shell and yolk–shell nanostructures can be precisely tuned. Importantly, as‐prepared SPIO@Y2O3:Eu yolk–shell nanocapsules (NCs) modified with amino groups as cancer‐cell fluorescence imaging agents are also demonstrated. To the best of our knowledge, this is the first report on the selected‐control fabrication of uniform SPIO@Y2O3:Eu core–shell nanoparticles and yolk–shell NCs. The combined magnetic manipulation and optical monitoring of magnetic–fluorescent SPIO@Y2O3:Eu yolk–shell NCs will open up many exciting opportunities in dual imaging for targeted delivery and thermal therapy.  相似文献   

15.
Polymeric core–shell microstructures have been constructed through a new method, namely sequential precipitation, which is intrinsically a self‐assembly and phase separation process. High‐quality poly(vinyldene fluoride)–polycarbonate–lithium perchlorate composite films with spherical core–shell microstructures have been prepared and determined to consist of conducting cores and insulating shells. Because of the percolation effect, the resulting materials present a dielectric constant as high as 104–107 at the threshold.

  相似文献   


16.
Colloidal photonic crystals were prepared from monodisperse core–shell particles. The shell is hereby formed from a functional monomer, such as glycidylmethacrylate or different reactive ester monomers, which can perform chemical reactions and the core from a standard monomer, which yields highly monodisperse colloids. It was possible to crystallize the core–shell particles into artificial opals with excellent optical properties. Reactions on the functional surface of the colloids were carried out, which lead to a dramatic rise in the mechanical stability or to a functionalization of His‐tagged silicatein, which acts as nanoreactor to synthesize and immobilize gold nanoparticles from auric acid onto the core–shell colloids.

  相似文献   


17.
Surface initiated living‐radical polymerization (SIP) based on dithiocarbamate iniferters has been used to create molecularly imprinted core‐shell (CS) nanoparticles. Using this approach, propranolol, morphine and naproxen have been successfully imprinted in particle shells (the latter could not be imprinted using conventional aqueous‐based CS methods). Rebinding properties of the imprinted particles appear to be similar to those made by alternative methods. The living radical initiation mechanism makes it possible to build complex multi‐layer particles sequentially. As a demonstration, multi‐layer propranolol‐imprinted particles were generated. Two additional functional shells were grown over the imprinted shell, while the propranolol binding was retained, albeit at a reduced level.

  相似文献   


18.
We report the direct solution‐phase characterization of individual gold‐core silver‐shell nanoparticles through an electrochemical means, with selectivity achieved between the core and shell components based on their different redox activities. The electrochemically determined core–shell sizes are in excellent agreement with electron microscopy‐based results, successfully demonstrating the electrochemical characterization of individual core–shell nanoparticles.  相似文献   

19.
20.
A large range of nanoparticles have been developed to encapsulate hydrophobic drugs. However, drug loading is usually less than 10 % or even 1 %. Now, core–shell nanoparticles are fabricated having exceptionally high drug loading up to 65 % (drug weight/the total weight of drug‐loaded nanoparticles) and high encapsulation efficiencies (>99 %) based on modular biomolecule templating. Bifunctional amphiphilic peptides are designed to not only stabilize hydrophobic drug nanoparticles but also induce biosilicification at the nanodrug particle surface thus forming drug‐core silica–shell nanocomposites. This platform technology is highly versatile for encapsulating various hydrophobic cargos. Furthermore, the high drug loading nanoparticles lead to better in vitro cytotoxic effects and in vivo suppression of tumor growth, highlighting the significance of using high drug‐loading nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号