共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(26):7718-7722
The metallic 1T‐MoS2 has attracted considerable attention as an effective catalyst for hydrogen evolution reactions (HERs). However, the fundamental mechanism about the catalytic activity of 1T‐MoS2 and the associated phase evolution remain elusive and controversial. Herein, we prepared the most stable 1T‐MoS2 by hydrothermal exfoliation of MoS2 nanosheets vertically rooted into rigid one‐dimensional TiO2 nanofibers. The 1T‐MoS2 can keep highly stable over one year, presenting an ideal model system for investigating the HER catalytic activities as a function of the phase evolution. Both experimental studies and theoretical calculations suggest that 1T phase can be irreversibly transformed into a more active 1T′ phase as true active sites in photocatalytic HERs, resulting in a “catalytic site self‐optimization”. Hydrogen atom adsorption is the major driving force for this phase transition. 相似文献
6.
7.
8.
9.
10.
11.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2018,130(27):8164-8168
Dielectric switches that can be converted between high and low dielectric states by thermal stimuli have attracted much interest owing to their many potential applications. Currently one main drawback for practical application lies in the non‐tunability of their switch temperatures (TS). We report here an ionic co‐crystal (Me3NH)4[Ni(NCS)6] that contains a multiply rotatable Me3NH+ ion and a solely rotatable one due to a more spacious supramolecular cage for the former one. This compound undergoes an isostructural order–disorder phase transition and it can function as a frequency‐tuned dielectric switch with highly adjustable TS, which is further revealed by the variable‐temperature structure analyses and molecular dynamics simulations. In addition, the distinct arrangements and molecular dynamics of two coexisting Me3NH+ ions confined in different lattice spaces as well as the notable offset effect on the promoting/hindering of dipolar reorientation after dielectric transition provide a rarely observed but fairly good model for understanding and modulating the dipole motion in crystalline environment. 相似文献
12.
13.
14.
15.
16.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(2):606-609
Co‐crystallization of a cyanide‐bridged tetranuclear complex [Co2Fe2] with 4‐cyanophenol (CP) gave a hydrogen bonding donor–acceptor system, [Co2Fe2(bpy*)4(CN)6(tp*)2](PF6)2⋅2 CP⋅8 BN ( 1 ). 1 exhibited a three‐step phase transition between HT, IM1, IM2, and LT phases upon temperature variation. Variable temperature magnetic measurements and structural analyses revealed that the three‐step spin transition is caused by electron‐transfer‐coupled spin transitions (ETCSTs) accompanied with alteration of the hydrogen bonding interactions. 相似文献
17.
18.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(40):12318-12322
Two‐dimensional (2D) layered hybrid perovskites have shown great potential in optoelectronics, owing to their unique physical attributes. However, 2D hybrid perovskite ferroelectrics remain rare. The first hybrid ferroelectric with unusual 2D multilayered perovskite framework, (C4H9NH3)2(CH3NH3)2Pb3Br10 ( 1 ), has been constructed by tailored alloying of the mixed organic cations into 3D prototype of CH3NH3PbBr3. Ferroelectricity is created through molecular reorientation and synergic ordering of organic moieties, which are unprecedented for the known 2D multilayered hybrid perovskites. Single‐crystal photodetectors of 1 exhibit fascinating performances, including extremely low dark currents (ca. 10−12 A), large on/off current ratios (ca. 2.5×103), and very fast response rate (ca. 150 μs). These merits are superior to integrated detectors of other 2D perovskites, and compete with the most active CH3NH3PbI3. 相似文献
19.
20.