首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Environmental methodologies are gaining recognition in this modern world. Environmental nanotechnology plays a major role in improving modern fields of environmental engineering and science. Metal oxide nanoparticles have exceptional properties due to their small size, including quantum confinement, surface-to-volume ratio, plasmon excitation, high biocompatibility, and surface modifiability. The biosynthesis of nanoparticles using fungi, bacteria, and plants through various biotechnological techniques is currently a new paradigm for environmental protection. Synthesis of nanoparticles through plant extract is good because it eliminates the dangers of toxic chemicals, it is environmentally friendly, simpler, and safer as the reaction time is reduced and it can also be increased in size for higher operation. The present study is based on the development of zinc oxide nanoparticles from papaya leaf extract where zinc nitrate is used as a precursor. The biosynthesized nanoparticles are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron microscopy, energy-dispersive X-ray analysis, UV-visible spectroscopy, and dynamic light scattering analysis. The crystalline phase determination of the zinc oxide nanoparticles is analyzed by X-ray diffraction and the formation of polycrystalline zinc oxide nanoparticles is confirmed. FT-IR spectrum reveals the main functional groups and chemical information in zinc oxide nanostructures. Morphological analysis is performed using SEM at different magnification levels. EDAX analysis shows the purity of the composite samples. Optical characterization is performed using a UV–vis spectrophotometer. DLS analysis shows that the nanoparticles formed have a relatively well-defined dimension.  相似文献   

2.
Nanomaterial is a rapidly growing area that is used to create a variety of new materials and nanotechnology applications from medical, pharmaceuticals, chemical, mechanical, electronics and several environmental industries including physical, chemical and biological nanoparticles are very important in our daily life. Nanoparticles with leaf extract from the healthy plant are important in the area of research using biosynthesis methods. Because of it’s used as an environmentally ecofriendly, other than traditional physical and chemical strategies. In particular, biologically synthesized nanoparticles have become a key branch of nanotechnology. The present work presents a synthesis of zinc oxide nanoparticles using an extract from the Argemone leaf Mexicana. Biosynthetic nanoparticles are characterized by X-ray diffraction (XRD), Ultraviolet visible (UV-vis) spectroscopy analysis, a Fourier Transform Infrared Spectroscopy analysis (FTIR) and a scanning electron microcopy (SEM), X-ray analysis with dispersive energy (EDAX). XRD is used to examine the crystalline size of zinc oxide nanoparticles. The FTIR test consists in providing evidence of the presence of targeted teams. UV is used for optical properties and calculates the energy of the bandwidth slot. The scanning microscope emission reveals the morphology of the surface and the energy dispersive X-ray analysis confirms the basic composition of zinc oxide nanoparticles. It is found that zinc nanoparticles are capable of achieving high anti-fungal efficacy and therefore have a high potential antimicrobial activity of ZnO NPs, like antibacterial and high antioxidant. Zinc Oxide nanoparticles from the Argemone Mexicana leaf extract have several antimicrobial applications, such as medical specialty, cosmetics, food, biotechnology, nano medicine and drug delivery system. ZnO nanoparticles are important because they provide many practical applications in industry. The most important use of nanoparticles of ZnO would be strong antibacterial and antioxidant activity with a simple and efficient biosynthesis method may be used for future work applications.  相似文献   

3.
Biogenic metal oxide nanoparticles (NPs) have emerged as a useful tool in biology due to their biocompatibility properties with most biological systems. In this study, we report the synthesis of copper oxide (CuO), zinc oxide (ZnO) nanoparticles (NPs), and their nanocomposite (CuO–ZnO) prepared using the phytochemical extracts from the leaves of Dovyalis caffra (kei apple). The physicochemical properties of these nanomaterials were established using some characterization techniques including X-ray diffraction analysis (XRD), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The XRD result confirmed the presence of a monoclinic CuO (Tenorite), and a hexagonal ZnO (Zincite) nanoparticles phase, which were both confirmed in the CuO–ZnO composite. The electron microscopy of the CuO–ZnO, CuO, and ZnO NPs showed a mixture of nano-scale sizes and spherical/short-rod morphologies, with some agglomeration. In the constituent’s analysis (EDX), no unwanted peak was found, which showed the absence of impurities. Antioxidant properties of the nanoparticles was studied, which confirmed that CuO–ZnO nanocomposite exhibited better scavenging potential than the individual metal oxide nanoparticles (CuO, and ZnO), and ascorbic acid with respect to their minimum inhibitory concentration (IC50) values. Similarly, the in vitro anticancer studies using MCF7 breast cancer cell lines indicated a concentration-dependent profile with the CuO–ZnO nanocomposite having the best activity over the respective metal oxides, but slightly lower than the standard 5-Fluorouracil drug.  相似文献   

4.
The green synthesis of iron oxide nanoparticles (FeO NP) has been investigated using the extract in absolute ethanolic and alcoholic solvents 96% from the peel of the mango fruit (Mangifera indica), thus evaluating the influence of the type of solvent on the extraction of reducing metabolites. A broad approach to characterization initially controlled by UV-vis spectrophotometry has been directed, the formation mechanism was evaluated by Fourier transform infrared spectroscopy (FTIR), the magnetic properties by characterization by Physical Property Measurement System (PPSM), in addition to a large number of techniques such as X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (DRX), transmission electron microscopy (TEM/STEM), electron energy loss spectroscopy (EELS), and Z potential to confirm the formation of FeO NP. The results suggest better characteristics for FeO NP synthesized using 96% alcoholic solvent extract. The successful synthesis was directly proven in the removal of metals (Cr-VI, Cd, and Pb) as a potential alternative in the remediation of agricultural soils.  相似文献   

5.
Mg-doped zinc oxide and zinc oxide nanoparticles were prepared by using methanolic seed extract from the Eucalyptus grandis plant via a green approach. Phytoconstituents present in seed extract act as capping and stabilizing agents for the biosynthesis of nanoparticles. Doping of Mg to zinc oxide nanoparticles increases the bandgap energy, thus enhancing its chemical, physical and optical properties. Further, it was characterized by various techniques such as scanning electron microscopy giving morphological information about the wurtzite hexagonal structure of bio-synthesized nanoparticles. X-ray diffraction technique tells about the crystalline nature of particles and the average crystallite size for zinc oxide and doped zinc oxide nanoparticles. Mg as a dopant enhances the properties of nanoparticles, thus making it more efficiently applicable as an antibacterial agent against Escherichia coli, gram-negative bacteria.  相似文献   

6.
Bio synthesis of nanoparticles using plant parts has gained considerable attention, given the fact that the method is green, environment friendly, cheaper, simple and involves no hazardous substances. The present study involves the green synthesis of copper oxide nanoparticles (CuO NPs) using chitosan and the aqueous leaf extract of Elsholtzia blanda, an aromatic medicinal herb. The synthesized E.blanda-chitosan mediated copper oxide nanoparticles (CPCE) and E. blanda mediated copper oxide nanoparticles (PCE) were subjected to different characterization techniques, Ultraviolet–visible (UV–Vis), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX), High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). The absorbance peaks in UV–Vis spectroscopy at 286 nm and 278 nm for CPCE and PCE respectively indicated the formation of nanoparticles. TEM and SEM employed for studying the surface morphology showed rod-like and spherical morphology bearing average size of 47.71 nm for CPCE and 36.07 nm for PCE. The antibacterial activities of the prepared nanoparticles were tested against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Salmonella typhi by agar well diffusion method. The results indicate that CuO NPs possess effective antibacterial potential against all tested bacteria with a maximum zone of inhibition of 18 mm for Enterococcus faecalis. Antioxidant studies revealed the highest DPPH scavenging activity of 89% at 25 μg/mL concentration of the nanoparticles. The percentage of the photo catalytic degradation of Congo red was found to be 95% after 10 h.  相似文献   

7.
沉淀溶解法制备纳米硫化锌   总被引:7,自引:0,他引:7  
以烷基黄原酸锌和硫化钠分别为锌源和硫源,采用烷基黄原酸锌沉淀溶解法制备了粒度可调、粒径分布比较窄的面心硫化锌纳米粒子,利用比表面积(BET)测定、透射电镜(TEM)、粉末X射线衍射(XRD)、傅里叶转换红外光谱(FTIR)等方法对合成的硫化锌纳米粒子进行了表征。结果表明随着烷基黄原酸锌链长的增长,通过添加硫化钠而生成的硫化锌纳米粒子的粒径逐渐减小。本文还对沉淀溶解法制备纳米硫化锌的溶液化学反应机理进行了探讨。  相似文献   

8.
Modifying and functionalizing activated carbon using metal nanoparticles have received great scientific attention in recent decades as a method to improve its inherent properties. The synergistic effects between the dopant and the activated carbon could lead to advanced properties in the hybrid material compared to individual counterparts. In this study, copper-doped activated carbon from coconut coir (Cu-ACC) is synthesized by an in-situ reduction method. The successful doping of zerovalent copper nanoparticles (Cu np) into the activated carbon matrix was confirmed using several characterization techniques. Peaks related to zerovalent Cu np in the X-ray diffractogram confirmed the successful formation of zerovalent Cu np. The dopant-matrix interactions were confirmed through peak shifts in the Fourier Transform Infrared Spectroscopy and D and G band changes in the Raman spectrum of Cu-ACC. The Cu 2p band in XPS of the Cu-ACC showed a sharp doublet at 932.7 eV, confirming the presence of metallic Cu. As indicated in the TEM/SEM images, Cu np demonstrated a spherical morphology with an average diameter of 5 nm. It was further observed that the Cu-ACC nanohybrid material could remove fluoride (63%) and hardness (69%) in synthetic water. Cu-ACC further demonstrates an enhanced antimicrobial activity against three commonly found water pathogens; E. coli, S. typhi, and S. flexneri. The material is expected to be used in next-generation domestic water filters formulated as single-use sachet bags.  相似文献   

9.
In the present scenario, metal nanoparticles have elicited a great deal of interest in biomedical applications because of their unique properties and antimicrobial potentials. Over the past few years, the green nanotechnology has materialized as a momentous approach for the synthesis and fabrication of noble metal salt and metal nanoparticles. The green route synthesis exploits diverse reducing and stabilizing agents from bacterial resources for the successful synthesis of metal nanoparticles. This review mainly focuses on the biosynthesis of the most commonly studied metal and metal salt nanoparticles such as gold, silver, platinum, palladium, copper, cadmium, titanium oxide, zinc oxide, zinc sulphate, cadmium sulphide and many more. These noble nanoparticles can be exploited in pharmaceutical industry as antimicrobial and anti-biofilm agents, targeted delivery of anticancer drugs, biosensors, etc.  相似文献   

10.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   

11.
The freshly prepared water-wet amidoximated bacterial cellulose (Am-BC) serves as an effective nanoreactor to synthesis zinc oxide nanoparticles by in situ polyol method. The obtained ZnO/Am-BC nanocomposites have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The influence of the zinc acetate concentration on the morphologies and size ofZnO nanoparticles and the possible formation mechanism were discussed. The results indicated that uniform ZnO nanoparticles were homogeneously anchored on the Am-BC nanofibers through strong interaction between the hydroxyl and amino groups of Am-BC and ZnO nanoparticles. The loading content of ZnO nanoparticles is higher using Am-BC as a template than using the unmodified bacterial cellulose. The resultant nanocomposite synthesized at 0.05 wt% shows a high photocatalytic activity (92%) in the degradation of methyl orange.  相似文献   

12.
In this work, the assessment of Azadirachta indica, Tagetes erecta, Chrysanthemum morifolium, and Lentinula edodes extracts as catalysts for the green synthesis of zinc oxide nanoparticles (ZnO NPs) was performed. The photocatalytic properties of ZnO NPs were investigated by the photodegradation of methylene blue (MB) dye under sunlight irradiation. UV-visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Brunauer-Emmett-Teller analysis (BET) were used for the characterization of samples. The XRD results indicate that all synthesized nanoparticles have a hexagonal wurtzite crystalline structure, which was confirmed by TEM. Further, TEM analysis proved the formation of spherical and hemispherical nanoparticles of ZnO with a size in the range of 14–32 nm, which were found in aggregate shape; such a size was well below the size of the particles synthesized with no extract (~43 nm). ZnO NPs produced with Tagetes erecta and Lentinula edodes showed the best photocatalytic activity, matching with the maximum adsorbed MB molecules (45.41 and 58.73%, respectively). MB was completely degraded in 45 min using Tagetes erecta and 120 min using Lentinula edodes when subjected to solar irradiation.  相似文献   

13.
In this review, the importance of electrical arc discharge technique in liquids in synthesis of various nanostructures from carbon based materials to metal and metal oxide nanostructures with their general and specific properties, especially the photocatalytic performance of metal oxide nanostructures is studied. The effect of arc current on size distribution, morphology and physicochemical properties of metal and semiconductor nanostructures was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS) and UV–Vis spectroscopy. WO3 Cubic nanostructures with 30 nm mean particle size were formed during the discharge process in water. Discharge between zinc electrodes in water leads to formation of rod like and semi spherical ZnO nanostructures with 15–20 nm diameter range. ZrO2 nanoparticles were formed using zirconium electrodes in water. Photodegradation of Rhodamine B (Rh. B) shows that the as prepared nanostructures in this method have potential ability for environmental purifications. Also, using silver electrodes in water leads to formation of silver nanoparticles with 8–15 nm average particle size. Moreover, a novel method for synthesis of gold nanoparticles without using gold electrodes is presented. Finally, the future outlook of this technique in synthesis of various nanocrystalline materials is presented.  相似文献   

14.
The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N=[H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius ≈ 1.5 nm) rotation inside the primary aggregate (radius <3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.  相似文献   

15.
The research is aimed at synthesis and characterization of nanoscaled zinc oxide particles and their application on linen fibrous supports, for thermal properties. To impart thermal activity to the fibrous nanocomposites, nanoparticles as well as fibrous nanocomposites were produced in different hydrothermal conditions of temperature (90 °C). To characterize the nanoparticles composition, their shape, size, and crystallinity, investigations technique, such as Fourier transformed infrared spectroscopy, scanning electron microscopy, and X-ray powder diffractometry were used. Differential scanning calorimetry analysis profiles were also revealed. The thermal treatment of linen fabrics with nanosized ZnO does not modify significantly their thermal stability.  相似文献   

16.
Cellulose-ZnO composite was achieved by microwave assisted dissolution of cellulose in ionic liquid 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) followed by addition of premixed ground of Zn(CH3COO)2·2H2O and NaOH. Surface characterization, optical property and thermal stability of nanocomposite were determined by X-ray diffraction, scanning electron microscopy (SEM), UV–Vis spectroscopy and thermo gravimetric analysis. XRD patterns showed the ZnO in polymer matrix has the wurtzite structure. Presence of zinc oxide nanoparticles and cellulose fibers in the composites were observed by SEM. Band-edge transition of zinc oxide in the nanocomposite occurs in lower wavelength than bulk zinc oxide. Thermal stability of nanocomposite was lower than regenerated cellulose due to catalyst behavior of zinc oxide nanoparticles in cellulose matrix.  相似文献   

17.
Biomimetic synthesis is emerging as an advantageous alternative to the harsh synthetic conditions traditionally used in metal oxide syntheses techniques. Silaffins, proteins from the C. fusiformis diatom, form silica in an aqueous environment under benign conditions. Amine terminated PAMAM and PPI dendrimers are effective mimics of silaffins and other silica precipitating polyamines. We have expanded the scope of dendrimer mediated metal oxide formation to include titanium dioxide, a photocatalyst, and germanium dioxide, a blue photoluminescent material. The nanoparticles were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (IR), and X-ray diffraction patterns (XRD). A variable temperature XRD analysis of TiO(2) nanoparticles was conducted to study the transition from anatase to rutile. TiO(2) nanoparticles synthesized in phosphate buffer showed a 200 degrees C decrease in the anatase to rutile transition temperature relative to TiO(2) templated in water. XRD analysis of GeO(2) nanoparticles in either water or phosphate buffer reveal crystalline alpha-phase germanium oxide. To our knowledge, this is the first report of the synthesis of crystalline GeO(2) under ambient conditions.  相似文献   

18.

The current study was undertaken to investigate the antibacterial (against molecular characterized E. coli isolated from poultry faeces) potential of biosynthesized zinc oxide nanoparticles (ZnO-NPs) from Passiflora subpeltata Ortega aqueous leaf extract. The biosynthesized nanoparticles were subjected to physico-chemical characterization to study shape, size and purity by UV–Vis spectroscopy, X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The molecular identification of isolated E. coli from faeces samples was carried out by using 16–23s rRNA primers. The results of the physico-chemical characterization revealed that the biosynthesized nanoparticles were of 93.7% purity with an average size between 45 and 50 nm. The ZnO-NPs offered significant inhibition against the isolated Gram-negative E. coli with MIC at 62.5 µg mL?1 concentration. The antibacterial potential of ZnO NPs against E. coli has also been investigated by the cell viability test, and further the effects of ZnO NPs on bacterial morphological structures was analysed by SEM and TEM.

  相似文献   

19.
Palladium nanoparticles have been evaluated as a viable candidate in the realm of biological applications due to their unique features. Saussurea costus extract was used as a stabilizing and reducing agent for the synthesis of palladium nanoparticles with average grain size of 17.6 ± 1.2 nm. The synthesized PdNPs were evaluated for their antioxidant activity, anti Alzheimer's activity, antibacterial and anticancer activities. The nanocharacterization was carried out using different spectroscopic techniques, including UV–visible spectroscopy, Transmission Electron Microscopy, Fourier Transformed Infrared spectroscopy, X-ray Diffraction analysis, X-ray Photoelectron spectroscopy, Energy Dispersive X-ray Spectroscopy, Size distribution, and Zeta potential. The characterization data explained the PdNPs mediated by S.costus extract have spherical form and are disseminated without agglomeration. FTIR and XPS supported the hypotheisis that the biomolecules of S.costus are activing as a reducing and stabilizing agents. The antioxidant activity of PdNPs was assessed using a free radical scavenging assay (DPPH) which exhibited similar results to the ABTS assay i.e. 90 μg/mL IC50 value. Moreover Alzheimer's disease can easily be inhibited by S.costus@PdNPs at 400 mg/mL, with 79.23 ± 1.11 % of inhibition rate against AChE and 76.13 ± 0.43 % towards BChE. S.costus@PdNPs showed comparatively greater antibacterial activity against all four Staphylococcus aureus, Bacillus subtilis Escherichia coli and Pseudomonas aeruginosa microorganisms. Supplementary research carried out on the anti-tumor effects of the generated PdNPs using the colon cancer (HCT-116), hepatocellular carcinoma (HepG2), and breast adenocarcinoma (MCF-7) cell lines. PdNPs showed potent anticancerous activity against all the cell lines. Thus we recommend S.costus@PdNPs as a thearapeutic agent after successful clinical trails in future.  相似文献   

20.
Eco friendly and green synthetic approach for the synthesis of metallic nanoparticles gained much importance in the recent era. In the present study, an environmental friendly and plant mediated synthetic approach was used for the synthesis of gold coated iron (Fe@Au) nanoparticles using extract solution of olive oil, licorice root (Glycyrrhiza glabra) and coconut oil (OLC). These extracts were acted as a reducing agent during the formation of core–shell nanoparticles that provides long-time stability, lower toxicity and higher permeability to specific target cells. In order to achieve the small sized, regular spherical shaped, and homogeneous nanoparticles optimum conditions were ensured. In fact, the use of microwave irradiation was offered higher reaction rate and better product. The Fe@AuNPs have been characterized by UV–Visible spectroscopy, Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), High resolution Transmission electron microscope (HR-TEM), Fourier Transform Infrared Spectroscopy (FT-IR), high-performance liquid chromatography (HPLC), High angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), Particle-Size Distribution (PSD), and Magnetic hysteresis loops. The synthesized gold coated iron nanoparticles showed significant antioxidant potential with maximum inhibition rates, the biosynthesized nanoparticles were also found effective against Helicobacter pylori (H. pylori) and ulcer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号