首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The selective oxidation of alkanes as a green process remains a challenging task because partial oxidation is easier to achieve with sacrificial oxidants, such as hydrogen peroxide, alkyl hydroperoxides or iodosylbenzene, than with molecular oxygen or air. Here, we report on a heterogeneous catalyst for n‐hexadecane oxidation comprised of the wheel shaped Cu20‐polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25? anchored on 3‐aminopropyltriethoxysilane (apts)‐modified SBA‐15. The catalysts were characterized by powder X‐ray diffraction (XRD), N2‐adsorption measurements and Fourier transform infrared reflectance (FT‐IR) spectroscopy. The heterogeneous Cu20‐polyanion system catalyzed the solvent‐free aerobic oxidation of n‐hexadecane to alcohols and ketones by using air as the oxidant under ambient conditions. The catalyst exhibits an exceptionally high turn over frequency (TOF) of 20 000 h?1 at 150 °C and is resistant to poisoning by CS2. Moreover, it can be easily recovered and reused by filtration without loss of its catalytic activity. Possible homogeneous contributions also have been examined and eliminated. Thus, this system can use air as oxidant, which, in combination with its good overall performance and poison tolerance, raises the prospect of this type of heterogeneous catalyst for practical applications.  相似文献   

7.
8.
The hydrophilic polyoxotungstate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25- ({Cu20P8W48}) self-assembles into single-layer, hollow, spherical "blackberry"-type structures in aqueous solutions, as studied by dynamic light scattering (DLS), static light scattering (SLS), zeta potential analysis, and scanning electron microscopy (SEM) techniques. This represents the first report of blackberry formation for a non-Mo-containing polyoxometalate. There is no obvious change in the shape and size of the blackberries during the slow blackberry formation process, neither with macroionic concentration nor with temperature. Our results suggest that the blackberry-type structure formation is most likely a general phenomenon for hydrophilic macroions with suitable size and charge in a polar solvent, and not a specific property of polyoxomolybdates and their derivatives. The {Cu20P8W48} macroions are thus far the smallest type of macroions to date (equivalent radius < 2 nm) showing the unique self-assembly behavior, helping us to move one step closer toward identifying the transition point from simple ions (can be described by the Debye-Hückel theory) to macroions in very dilute solutions. Moreover, by using {Cu20P8W48} blackberry-type structures as the model system, the electrophoretic properties of macroionic supramolecular structures are studied for the first time via zeta-potential analysis. The mobility of blackberry-type structures is determined and used for understanding the state of small cations in solution. We notice that the average charge density on each {Cu20P8W48} macroanion in a blackberry is much lower than that of discrete "free" {Cu20P8W48} macroions. This result suggests that some small alkali counterions are closely associated with, or even incorporated into, the blackberry-type structures and thus do not contribute to solution conductivity. This model is fully consistent with our speculation that monovalent counterions play an important role in the self-assembly of macroions, possibly providing an attractive force contributing to blackberry formation.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号