首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   

6.
7.
The chemical properties of the 4,5,8‐tridehydroisoquinolinium ion (doublet ground state) and related mono‐ and biradicals were examined in the gas phase in a dual‐cell Fourier‐transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The triradical abstracted three hydrogen atoms in a consecutive manner from tetrahydrofuran (THF) and cyclohexane molecules; this demonstrates the presence of three reactive radical sites in this molecule. The high (calculated) electron affinity (EA=6.06 eV) at the radical sites makes the triradical more reactive than two related monoradicals, the 5‐ and 8‐dehydroisoquinolinium ions (EA=4.87 and 5.06 eV, respectively), the reactivity of which is controlled predominantly by polar effects. Calculated triradical stabilization energies predict that the most reactive radical site in the triradical is not position C4, as expected based on the high EA of this radical site, but instead position C5. The latter radical site actually destabilizes the 4,8‐biradical moiety, which is singlet coupled. Indeed, experimental reactivity studies show that the radical site at C5 reacts first. This explains why the triradical is not more reactive than the 4‐dehydroisoquinolinium ion because the C5 site is the intrinsically least reactive of the three radical sites due to its low EA. Although both EA and spin–spin coupling play major roles in controlling the overall reactivity of the triradical, spin–spin coupling determines the relative reactivity of the three radical sites.  相似文献   

8.
The σ‐hole of M2H6 (M = Al, Ga, In) and π‐hole of MH3 (M = Al, Ga, In) were discovered and analyzed, the bimolecular complexes M2H6···NH3 and MH3···N2P2F4 (M = Al, Ga, In) were constructed to carry out comparative studies on the group III σ‐hole interactions and π‐hole interactions. The two types of interactions are all partial‐covalent interactions; the π‐hole interactions are stronger than σ‐hole interactions. The electrostatic energy is the largest contribution for forming the σ‐hole and π‐hole interaction, the polarization energy is also an important factor to form the M···N interaction. The electrostatic energy contributions to the interaction energy of the σ‐hole interactions are somewhat greater than those of the π‐hole interactions. However, the polarization contributions for the π‐hole interactions are somewhat greater than those for the σ‐hole interactions. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
10.
The molecules of 4‐allyloxy‐7‐chloroquinoline, C12H10ClNO, (I), 7‐chloro‐4‐methoxyquinoline, C10H8ClNO, (II), and 7‐chloro‐4‐ethoxyquinoline, C11H10ClNO, (III), are all planar. In all three structures, π–π interactions between the quinoline ring systems are generated by unit‐cell translations along the a axes, irrespective of space group. These structures are the first reported for 4‐alkoxyquinolines.  相似文献   

11.
The first examples of air‐stable 20π‐electron 5,10,15,20‐tetraaryl‐5,15‐diaza‐5,15‐dihydroporphyrins, their 18π‐electron dications, and the 19π‐electron radical cation were prepared through metal‐templated annulation of nickel(II) bis(5‐arylamino‐3‐chloro‐8‐mesityldipyrrin) complexes followed by oxidation. The neutral 20π‐electron derivatives are antiaromatic and the cationic 18π‐electron derivatives are aromatic in terms of the magnetic criterion of aromaticity. The meso N atoms in these diazaporphyrinoids give rise to characteristic redox and optical properties for the compounds that are not typical of isoelectronic 5,10,15,20‐tetraarylporphyrins.  相似文献   

12.
Thermolysis of [Cp*Ru(PPh2(CH2)PPh2)BH2(L2)] 1 (Cp*=η5‐C5Me5; L=C7H4NS2), with terminal alkynes led to the formation of η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)B{R‐C=CH2}(L)2] ( 2 a – c ) and η2‐vinylborane complexes [Cp*Ru(R‐C=CH2)BH(L)2] ( 3 a – c ) ( 2 a , 3 a : R=Ph; 2 b , 3 b : R=COOCH3; 2 c , 3 c : R=p‐CH3‐C6H4; L=C7H4NS2) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a – c are linked by a unique η4‐interaction. Conversions of 1 into 3 a – c proceed through the formation of intermediates 2 a – c . Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ‐borane complex [Cp*RuCO(μ‐H)BH2L] 4 (L=C7H4NS2) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η4‐σ,π‐borataallyl complexes [Cp*Ru(μ‐H)BH{R‐C=CH2}(L)] 5 and [Cp*Ru(μ‐H)BH{HC=CH‐R}(L)] 6 (R=COOCH3; L=C7H4NS2) by Markovnikov and anti‐Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η4‐σ,π‐borataallyl complex [Cp*Ru(μ‐H)BH{R‐C=CH‐R}(L)] 7 (R=COOCH3; L=C7H4NS2). An agostic interaction was also found to be present in 2 a – c and 5 – 7 , which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, 1H, 11B, 13C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b , 3 a – c and 5 – 7 . DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds.  相似文献   

13.
The hydride complex K[(η5‐C5H5)Mn(CO)2H] reacted with a range of dihalo(organyl)boranes X2BR (X = Cl, Br; R = tBu,Mes, Ferrocenyl) to give the corresponding borane complexes[(η5‐C5H5)Mn(CO)2(HB(X)R)]., The presence of a hydride in bridging position between manganese and boron was deduced from 11B decoupled 1H NMR spectra. Additionally, the structure of the tert‐butyl borane complex was confirmed by single‐crystal X‐ray diffraction.  相似文献   

14.
The C3‐symmetric propeller‐chiral compounds (P,P,P)‐ 1 and (M,M,M)‐ 1 with planar π‐cores perpendicular to the C3‐axis were synthesized in optically pure states. (P,P,P)‐ 1 possesses two distinguishable propeller‐chiral π‐faces with rims of different heights named the (P/L)‐face and (P/H)‐face. Each face is configurationally stable because of the rigid structure of the helicenes contained in the π‐core. (P,P,P)‐ 1 formed dimeric aggregates in organic solutions as indicated by the results of 1H NMR, CD, and UV/Vis spectroscopy and vapor pressure osmometry analyses. The (P/L)/(P/L) interactions were observed in the solid state by single‐crystal X‐ray analysis, and they were also predominant over the (P/H)/(P/H) and (P/L)/(P/H) interactions in solution, as indicated by the results of 1H and 2D NMR spectroscopy analyses. The dimerization constant was obtained for a racemic mixture, which showed that the heterochiral (P,P,P)‐ 1 /(M,M,M)‐ 1 interactions were much weaker than the homochiral (P,P,P)‐ 1 /(P,P,P)‐ 1 interactions. The results indicated that the propeller‐chiral (P/L)‐face interacts with the (P/L)‐face more strongly than with the (P/H)‐face, (M/L)‐face, and (M/H)‐face. The study showed the π‐face‐selective aggregation and π‐face chiral recognition of the configurationally stable propeller‐chiral molecules.  相似文献   

15.
Two types of chiral stationary phases for HPLC based on π‐acidic or π‐basic perphenylcarbamoylated β‐CDs were synthesized. The relative structural features of the two effective chiral selectors are discussed and compared in both normal‐phase and RP modes. In addition, the nature and concentration of alcoholic modifiers were varied for optimal separation in normal phase and the structural variation of the analytes was also examined. The results showed that hydrogen bonding, steric effect and π‐acidic–π‐basic interaction contributed greatly to enantioseparation. Upon comparison, some of the differences in the separation behavior of the two types of chiral stationary phases might be due to the π‐acidic or π‐basic phenylcarbamate groups.  相似文献   

16.
A series of π‐extended aromatic indenofluorene (IF) analogues with naphthalene and anthracene cores have been synthesized through acid‐catalyzed intramolecular cyclization. The regioselectivity of the reaction is controlled by a combination of steric and electronic factors and in some cases several possible regioisomers have resulted from the same precursor. The effects of ring connectivity on the optoelectronic properties were investigated by DFT calculations, absorption/emission spectroscopy, cyclic voltammetry, and spectroelectrochemical studies. All regioisomers exhibited a redshift of their absorption/emission bands relative to the parent IF analogues, but the magnitude of this shift and other optoelectronic properties (luminescence quantum yield, etc.) depends on the ring connectivity in a less obvious manner.  相似文献   

17.
18.
本文设计合成了四类端位4-氰基和4-硝基苯甲羧取代的二苯乙炔类化合物,并通过DSC和偏光显微镜对它们的液晶性进行了研究。讨论了二苯乙炔核中全氟亚苯基的左右位置对液晶性的影响,比较了氰基取代和硝基取代的苯甲羧二苯乙炔类化合物的液晶性差异。  相似文献   

19.
The structure of the title compound, C17H16OS, is primarily stabilized by T‐shaped and parallel‐displaced aromatic clusters. The distances between the centroids of the aromatic pairs are in the range 4.34–5.30 Å. In the crystal packing, the mol­ecules dimerize by means of π–π interactions of both face‐to‐face and edge‐to‐face types, and the aromatic rings associate in a cyclic edge‐to‐face tetrameric arrangement of the herring‐bone type. These herring‐bone interactions appear to insulate hydrogen‐bond interactions in the crystal structure.  相似文献   

20.
Alkane σ‐complexes have evolved from a curious phenomenon to an intermediate of intense interest, fuelling research into the area. Over the last fifteen years, metal alkane complex characterisation has evolved to incorporate reports employing UV/Vis, IR and NMR spectroscopy, and X‐ray and neutron diffractometry. Previously, due to the sparse geometric characterisation of alkane σ‐complexes, assumptions regarding bonding geometries and selectivities were made by comparison to related σ‐complexes, or by analysis of C?H activation products. This minireview assembles relevant literature that illuminates the metrics of alkane–metal bonding, and critically analyses the binding mode, selectivity and stability of alkane complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号