首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Our previous study found that desmethylxanthohumol (1) inhibited α-glucosidase in vitro. Recently, further investigations revealed that dehydrocyclodesmethylxanthohumol (2) and its dimer analogue rottlerone (3) exhibited more potent α-glucosidase inhibitory activity than 1. The aim of this study was to synthesize a series of rottlerone analogues and evaluate their α-glucosidase and DPP-4 dual inhibitory activity. The results showed that compounds 4d and 5d irreversibly and potently inhibited α-glucosidase (IC50 = 0.22 and 0.12 μM) and moderately inhibited DPP-4 (IC50 = 23.59 and 26.19 μM), respectively. In addition, compounds 4d and 5d significantly promoted glucose consumption, with the activity of 5d at 0.2 μM being comparable to that of metformin at a concentration of 1 mM.  相似文献   

2.
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM).  相似文献   

3.
α-Glucosidase inhibitors (AGIs) are used as medicines for the treatment of diabetes mellitus. The α-Glucosidase enzyme is present in the small intestine and is responsible for the breakdown of carbohydrates into sugars. The process results in an increase in blood sugar levels. AGIs slow down the digestion of carbohydrates that is helpful in controlling the sugar levels in the blood after meals. Among heterocyclic compounds, benzimidazole moiety is recognized as a potent bioactive scaffold for its wide range of biologically active derivatives. The aim of this study is to explore the α-glucosidase inhibition ability of benzimidazolium salts. In this study, two novel series of benzimidazolium salts, i.e., 1-benzyl-3-{2-(substituted) amino-2-oxoethyl}-1H-benzo[d]imidazol-3-ium bromide 9a–m and 1-benzyl-3-{2-substituted) amino-2-oxoethyl}-2-methyl-1H-benzo[d] imidazol-3-ium bromide 10a–m were screened for their in vitro α-glucosidase inhibitory potential. These compounds were synthesized through a multistep procedure and were characterized by 1H-NMR, 13C-NMR, and EI-MS techniques. Compound 10d was identified as the potent α-glucosidase inhibitor among the series with an IC50 value of 14 ± 0.013 μM, which is 4-fold higher than the standard drug, acarbose. In addition, compounds 10a, 10e, 10h, 10g, 10k, 10l, and 10m also exhibited pronounced potential for α-glucosidase inhibition with IC50 value ranging from 15 ± 0.037 to 32.27 ± 0.050 µM when compared with the reference drug acarbose (IC50 = 58.8 ± 0.12 μM). A molecular docking study was performed to rationalize the binding interactions of potent inhibitors with the active site of the α-glucosidase enzyme.  相似文献   

4.
In the study, two novel compounds along with two new compounds were isolated from Grewia optiva. The novel compounds have never been reported in any plant source, whereas the new compounds are reported for the first time from the studied plant. The four compounds were characterized as: 5,5,7,7,11,13-hexamethyl-2-(5-methylhexyl)icosahydro-1H-cyclopenta[a]chrysen-9-ol (IX), docosanoic acid (X), methanetriol mano formate (XI) and 2,2’-(1,4-phenylene)bis(3-methylbutanoic acid (XII). The anticholinesterase, antidiabetic, and antioxidant potentials of these compounds were determined using standard protocols. All the isolated compounds exhibited a moderate-to-good degree of activity against acetylcholinesterases (AChE) and butyrylcholinesterase (BChE). However, compound XII was particularly effective with IC50 of 55 μg/mL (against AChE) and 60 μg/mL (against BChE), and this inhibitory activity is supported by in silico docking studies. The same compound was also effective against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid) radicals with IC50 values of 60 and 62 μg/mL, respectively. The compound also significantly inhibited the activities of α-amylase and α-glucosidase in vitro. The IC50 values for inhibition of the two enzymes were recorded as 90 and 92 μg/mL, respectively. The in vitro potentials of compound XII to treat Alzheimer’s disease (in terms of AchE and BChE inhibition), diabetes (in terms of α-amylase and α-glucosidase inhibition), and oxidative stress (in terms of free radical scavenging) suggest further in vivo investigations of the compound for assessing its efficacy, safety profile, and other parameters to proclaim the compound as a potential drug candidate.  相似文献   

5.
Bioactive compounds from medicinal plants are good alternative treatments for T2DM. They are also sources of lead molecules that could lead to new drug discoveries. In this study, Bauhinia strychnifolia Craib. stem, a traditional Thai medicinal plant for detoxification, was extracted into five fractions, including crude extract, BsH, BsD, BsE, and BsW, by ethanolic maceration and sequential partition with hexane, dichloromethane, ethyl acetate, and water, respectively. Among these fractions, BsE contained the highest amounts of phenolics (620.67 mg GAE/g extract) and flavonoids (131.35 mg QE/g extract). BsE exhibited the maximum inhibitory activity against α-glucosidase (IC50 1.51 ± 0.01 µg/mL) and DPP-IV (IC50 2.62 ± 0.03 µg/mL), as well as dominantly promoting glucose uptake on 3T3-L1 adipocytes. Furthermore, the four compounds isolated from the BsE fraction, namely resveratrol, epicatechin, quercetin, and gallic acid, were identified. Quercetin demonstrated the highest inhibitory capacity against α-glucosidase (IC50 6.26 ± 0.36 µM) and DPP-IV (IC50 8.25 µM). In addition, quercetin prominently enhanced the glucose uptake stimulation effect on 3T3-L1 adipocytes. Altogether, we concluded that quercetin was probably the principal bioactive compound of the B. strychnifolia stem for anti-diabetic, and the flavonoid-rich fraction may be sufficiently potent to be an alternative treatment for blood sugar control.  相似文献   

6.
Inhibiting the intestinal α-glucosidase can effectively control postprandial hyperglycemia for type 2 diabetes mellitus (T2DM) treatment. In the present study, we reported the binding interaction of betulinic acid (BA), a pentacyclic triterpene widely distributed in nature, on α-glucosidase and its alleviation on postprandial hyperglycemia. BA was verified to exhibit a strong inhibitory effect against α-glucosidase with an IC50 value of 16.83 ± 1.16 μM. More importantly, it showed a synergistically inhibitory effect with acarbose. The underlying inhibitory mechanism was investigated by kinetics analysis, surface plasmon resonance (SPR) detection, molecular docking, molecular dynamics (MD) simulation and binding free energy calculation. BA showed a non-competitive inhibition on α-glucosidase. SPR revealed that it had a strong and fast affinity to α-glucosidase with an equilibrium dissociation constant (KD) value of 5.529 × 10−5 M and a slow dissociation. Molecular docking and MD simulation revealed that BA bound to the active site of α-glucosidase mainly due to the van der Waals force and hydrogen bond, and then changed the micro-environment and secondary structure of α-glucosidase. Free energy decomposition indicated amino acid residues such as PHE155, PHE175, HIE277, PHE298, GLU302, TRY311 and ASP347 of α-glucosidase at the binding pocket had strong interactions with BA, while LYS153, ARG210, ARG310, ARG354 and ARG437 showed a negative contribution to binding affinity between BA and α-glucosidase. Significantly, oral administration of BA alleviated the postprandial blood glucose fluctuations in mice. This work may provide new insights into the utilization of BA as a functional food and natural medicine for the control of postprandial hyperglycemia.  相似文献   

7.
The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.  相似文献   

8.
The fungus strain DZ-3 was isolated from twigs of the well-known medicinal plant Eucommia ulmoides Oliver and identified as Aspergillus flavipes. Two new alkaloids, named asperflaloids A and B (1 and 2), together with 10 known compounds (3–12) were obtained from the EtOAc extract of the strain. Interestingly, the alkaloids 1–4 with different frameworks are characterized by the presence of the same anthranilic acid residue. The structures were established by detailed analyses of the spectroscopic data. The absolute configuration of asperflaloids A and B was resolved by quantum chemistry calculation. All compounds were screened for their inhibitions against α-glucosidase and the antioxidant capacities. The results were that compound 3 had an IC50 value of 750.8 μM toward α-glucosidase, and the phenol compounds 7 and 8 exhibited potent antioxidant capacities with IC50 values 14.4 and 27.1 μM respectively.  相似文献   

9.
α-Glucosidase plays a role in hydrolyzing complex carbohydrates into glucose, which is easily absorbed, causing postprandial hyperglycemia. Inhibition of α-glucosidase is therefore an ideal approach to preventing this condition. A novel polyprenylated benzoylphloroglucinol, which we named schomburgkianone I (1), was isolated from the fruit of Garcinia schomburgkiana, along with an already-reported compound, guttiferone K (2). The structures of the two compounds were determined using NMR and HRESIMS analysis, and comparisons were made with previous studies. Compounds 1 and 2 exhibited potent α-glucosidase inhibition (IC50s of 21.2 and 34.8 µM, respectively), outperforming the acarbose positive control. Compound 1 produced wide zones of inhibition against Staphylococcus aureus and Enterococcus faecium (of 21 and 20 mm, respectively), compared with the 19 and 20 mm zones of compound 2, at a concentration of 50 µg/mL. The MIC value of compound 1 against S. aureus was 13.32 µM. An in silico molecular docking model suggested that both compounds are potent inhibitors of enzyme α-glucosidase and are therefore leading candidates as therapies for diabetes mellitus.  相似文献   

10.
Four new phenanthrene derivatives, gastrobellinols A-D (1–4), were isolated from the methanolic extract of Gastrochilus bellinus (Rchb.f.) Kuntze, along with eleven known phenolic compounds including agrostophyllin (5), agrostophyllidin (6), coniferyl aldehyde (7), 4-hydroxybenzaldehyde (8), agrostophyllone (9), gigantol (10), 4-(methoxylmethyl)phenol (11), syringaldehyde (12), 1-(4′-hydroxybenzyl)-imbricartin (13), 6-methoxycoelonin (14), and imbricatin (15). Their structures were determined by spectroscopic methods. Each isolate was evaluated for α-glucosidase inhibitory activity. Compounds 1, 2, 3, 7, 9, 13, and 15 showed higher activity than the drug acarbose. Gastrobellinol C (3) exhibited the strongest α-glucosidase inhibition with an IC50 value of 45.92 μM. A kinetic study of 3 showed competitive inhibition on the α-glucosidase enzyme. This is the first report on the phytochemical constituents and α-glucosidase inhibitory activity of G. bellinus.  相似文献   

11.
Syzygium cumini (Pomposia) is a well-known aromatic plant belonging to the family Myrtaceae, and has been reported for its various traditional and pharmacological potentials, such as its antioxidant, antimicrobial, anti-inflammatory, and antidiarrheal properties. The chemical composition of the leaf essential oil via gas chromatography–mass spectrometry (GC/MS) analysis revealed the identification of fifty-three compounds representing about 91.22% of the total oil. The identified oil was predominated by α-pinene (21.09%), followed by β-(E)-ocimene (11.80%), D-limonene (8.08%), β-pinene (7.33%), and α-terpineol (5.38%). The tested oil revealed a moderate cytotoxic effect against human liver cancer cells (HepG2) with an IC50 value of 38.15 ± 2.09 µg/mL. In addition, it effectively inhibited acetylcholinesterase with an IC50 value of 32.9 ± 2.1 µg/mL. Furthermore, it showed inhibitory properties against α-amylase and α-glucosidase with IC50 values of 57.80 ± 3.30 and 274.03 ± 12.37 µg/mL, respectively. The molecular docking studies revealed that (E)-β-caryophyllene, one of the major compounds, achieved the best docking scores of −6.75, −5.61, and −7.75 for acetylcholinesterase, α-amylase, and α-glucosidase, respectively. Thus, it is concluded that S. cumini oil should be considered as a food supplement for the elderly to enhance memory performance and for diabetic patients to control blood glucose.  相似文献   

12.
Opuntia dillenii Ker Gawl. is one of the medicinal plants used for the prevention and treatment of diabetes mellitus (DM) in Morocco. This study aims to investigate the antihyperglycemic effect of Opuntia dillenii seed oil (ODSO), its mechanism of action, and any hypoglycemic risk and toxic effects. The antihyperglycemic effect was assessed using the OGTT test in normal and streptozotocin (STZ)-diabetic rats. The mechanisms of action were explored by studying the effect of ODSO on the intestinal absorption of d-glucose using the intestinal in situ single-pass perfusion technique. An Ussing chamber was used to explore the effects of ODSO on intestinal sodium-glucose cotransporter 1 (SGLT1). Additionally, ODSO’s effect on carbohydrate degrading enzymes, pancreatic α-amylase, and intestinal α-glucosidase was evaluated in vitro and in vivo using STZ-diabetic rats. The acute toxicity test on mice was performed, along with a single-dose hypoglycemic effect test. The results showed that ODSO significantly attenuated the postprandial hyperglycemia in normal and STZ-diabetic rats. Indeed, ODSO significantly decreased the intestinal d-glucose absorption in situ. The ex vivo test (Ussing chamber) showed that the ODSO significantly blocks the SGLT1 (IC50 = 60.24 µg/mL). Moreover, ODSO indu\ced a significant inhibition of intestinal α-glucosidase (IC50 = 278 ± 0.01 µg/mL) and pancreatic α-amylase (IC50 = 0.81 ± 0.09 mg/mL) in vitro. A significant decrease of postprandial hyperglycemia was observed in sucrose/starch-loaded normal and STZ-diabetic ODSO-treated rats. On the other hand, ODSO had no risk of hypoglycemia on the basal glucose levels in normal rats. Therefore, no toxic effect was observed in ODSO-treated mice up to 7 mL/kg. The results of this study suggest that ODSO could be suitable as an antidiabetic functional food.  相似文献   

13.
In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.  相似文献   

14.
Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = −7.2 to −9.6 kcal/mol (compared with acarbose ΔG = −6.1 kcal/mol) for α-amylase, and ΔG = −7.3 to −9.0 kcal/mol (compared with acarbose ΔG = −6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.  相似文献   

15.
The present study aimed to investigate the effects of mungbean water extract (MWE) on insulin downstream signaling in insulin-resistant HepG2 cells. Whole seed mungbean was extracted using boiling water, mimicking a traditional cooking method. Vitexin and isovitexin were identified in MWE. The results showed that MWE inhibited protein tyrosine phosphatase (PTP)-1B (IC50 = 10 μg/mL), a negative regulator of insulin signaling. MWE enhanced cellular glucose uptake and altered expression of genes involved in glucose metabolism, including forkhead box O1 (FOXO1), phosphoenolpyruvate carboxykinase (PEPCK), and glycogen synthase kinase (GSK)-3β in the insulin-resistant HepG2 cells. In addition, MWE inhibited both α-amylase (IC50 = 36.65 mg/mL) and α-glucosidase (IC50 = 3.07 mg/mL). MWE also inhibited the formation of advanced glycation end products (AGEs) (IC50 = 2.28 mg/mL). This is the first study to show that mungbean water extract increased cellular glucose uptake and improved insulin sensitivity of insulin-resistant HepG2 cells through PTP-1B inhibition and modulating the expression of genes related to glucose metabolism. This suggests that mungbean water extract has the potential to be a functional ingredient for diabetes.  相似文献   

16.
Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides.  相似文献   

17.
Hericium erinaceus, a culinary and medicinal mushroom, is widely consumed in Asian countries. Chemical investigation on the fruiting bodies of Hericium erinaceus led to the isolation of one new ergostane-type sterol fatty acid ester, erinarol K (1); and eleven known compounds: 5α,8α -epidioxyergosta-6,22-dien-3β-yl linoleate (2); ethyl linoleate (3); linoleic acid (4); hericene A (5); hericene D (6); hericene E (7); ergosta-4,6,8(14),22-tetraen-3-one (8); hericenone F (9); ergosterol (10); ergosterol peroxide (11); 3β,5α,6α,22E-ergosta-7,22-diene-3,5,6-triol 6-oleate (12). The chemical structures of the compounds were determined by 1D and 2D NMR (nuclear magnetic resonance) spectroscopy, mass spectra, etc. Anti-inflammatory effects of the isolated aromatic compounds (5–7, 9) were evaluated in terms of inhibition of pro-inflammatory mediator (TNF-α, IL-6 and NO) production in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophage cells. The results showed that compounds 5 and 9 exhibited moderate activity against TNF-α (IC50: 78.50 μM and 62.46 μM), IL-6 (IC50: 56.33 μM and 48.50 μM) and NO (IC50: 87.31 μM and 76.16 μM) secretion. These results supply new information about the secondary metabolites of Hericium erinaceus and their anti-inflammatory effects.  相似文献   

18.
Folk experiences suggest natural products in Tetradium ruticarpum can be effective inhibitors towards diabetes-related enzymes. The compounds were experimentally isolated, structurally elucidated, and tested in vitro for their inhibition effects on tyrosine phosphatase 1B (PTP1B) and α-glucosidase (3W37). Density functional theory and molecular docking techniques were utilized as computational methods to predict the stability of the ligands and simulate interaction between the studied inhibitory agents and the targeted proteins. Structural elucidation identifies two natural products: 2-heptyl-1-methylquinolin-4-one (1) and 3-[4-(4-methylhydroxy-2-butenyloxy)-phenyl]-2-propenol (2). In vitro study shows that the compounds (1 and 2) possess high potentiality for the inhibition of PTP1B (IC50 values of 24.3 ± 0.8, and 47.7 ± 1.1 μM) and α-glucosidase (IC50 values of 92.1 ± 0.8, and 167.4 ± 0.4 μM). DS values and the number of interactions obtained from docking simulation highly correlate with the experimental results yielded. Furthermore, in-depth analyses of the structure–activity relationship suggest significant contributions of amino acids Arg254 and Arg676 to the conformational distortion of PTP1B and 3W37 structures overall, thus leading to the deterioration of their enzymatic activity observed in assay-based experiments. This study encourages further investigations either to develop appropriate alternatives for diabetes treatment or to verify the role of amino acids Arg254 and Arg676.  相似文献   

19.
A series of hitherto unknown (1,4-disubstituted-1,2,3-triazol)-(E)-2-methyl-but-2-enyl nucleosides phosphonate prodrugs bearing 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as the key synthetic step. All novel compounds were evaluated for their antiviral activities against HBV, HIV and SARS-CoV-2. Among these molecules, only compound 15j, a hexadecyloxypropyl (HDP)/(isopropyloxycarbonyl-oxymethyl)-ester (POC) prodrug, showed activity against HBV in Huh7 cell cultures with 62% inhibition at 10 μM, without significant cytotoxicity (IC50 = 66.4 μM in HepG2 cells, IC50 = 43.1 μM in HepG2 cells) at 10 μM.  相似文献   

20.
Focal adhesion kinase (FAK) is responsible for the development and progression of various malignancies. With the aim to explore novel FAK inhibitors as anticancer agents, a series of 2,4-dianilinopyrimidine derivatives 8a–8i and 9a–9g containing 4-(morpholinomethyl)phenyl and N-substituted benzamides have been designed and synthesized. Among them, compound 8a displayed potent anti-FAK activity (IC50 = 0.047 ± 0.006 μM) and selective antiproliferative effects against H1975 (IC50 = 0.044 ± 0.011 μM) and A431 cells (IC50 = 0.119 ± 0.036 μM). Furthermore, compound 8a also induced apoptosis in a dose-dependent manner, arresting the cells in S/G2 phase and inhibiting the migration of H1975 cells, all of which were superior to those of TAE226. The docking analysis of compound 8a was performed to elucidate its possible binding modes with FAK. These results established 8a as our lead compound to be further investigated as a potential FAK inhibitor and anticancer agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号