首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Euphorbia species have a rich history of ethnomedicinal use and ethnopharmacological applications in drug discovery. This is due to the presence of a wide range of diterpenes exhibiting great structural diversity and pharmacological activities. As a result, Euphorbia diterpenes have remained the focus of drug discovery investigations from natural products. The current review documents over 350 diterpenes, isolated from Euphorbia species, their structures, classification, biosynthetic pathways, and their structure–activity relationships for the period covering 2013–2020. Among the isolated diterpenes, over 20 skeletal structures were identified. Lathyrane, jatrophane, ingenane, ingenol, and ingol were identified as the major diterpenes in most Euphorbia species. Most of the isolated diterpenes were evaluated for their cytotoxicity activities, multidrug resistance abilities, and inhibitory activities in vitro, and reported good activities with significant half-inhibitory concentration (IC50) values ranging from 10–50 µM. The lathyranes, isopimaranes, and jatrophanes diterpenes were further found to show potent inhibition of P-glycoprotein, which is known to confer drug resistance abilities in cells leading to decreased cytotoxic effects. Structure–activity relationship (SAR) studies revealed the significance of a free hydroxyl group at position C-3 in enhancing the anticancer and anti-inflammatory activities and the negative effect it has in position C-2. Esterification of this functionality, in selected diterpenes, was found to enhance these activities. Thus, Euphorbia diterpenes offer a valuable source of lead compounds that could be investigated further as potential candidates for drug discovery.  相似文献   

2.
The rhodanine core is a well-known privileged heterocycle in medicinal chemistry. The rhodanines, as subtypes of thiazolidin-4-ones, show a broad spectrum of biological activity, including anticancer properties. This review aims to analyze the anticancer features of the rhodanines described over the last decade in the scientific literature. The structure–activity relationship of rhodanine derivatives, as well as some of the molecular targets, were discussed. The information contained in this review could be of benefit to the design of new, effective small molecules with anticancer potential among rhodanine derivatives or their related heterocycles.  相似文献   

3.
Diarylpentanoids, a class of natural products and their synthetic analogs which are structurally related to chalcones, have gained increasing attention due to their wide array of biological activities, including antitumor, anti-infective, antioxidant, anti-inflammatory, antidiabetic, anti-hyperuricemic, and neuroprotective properties. Previously, we reviewed diarylpentanoids with promising antitumor activity. However, in view of the wide range of biological activities described for this class of compounds, the purpose of this review is to provide a more detailed overview of the synthetic bioactive diarylpentanoids that have been described over the last two decades, beyond simply their antitumor effects. A total of 745 compounds were found, highlighting the main synthetic methodologies used in their synthesis as well as the structure–activity relationship studies and structural features for all activities reported. Collectively, this review highlights the diarylpentanoid scaffold as a promising starting point for the development of new therapeutic agents.  相似文献   

4.
Methylglyoxal-induced oxidative stress and cytotoxicity are the main factors causing neuronal death-related, diabetically induced memory impairment. Antioxidant and anti-apoptotic therapy are potential intervention strategies. In this study, 25 flavonoids with different substructures were assayed for protecting PC-12 cells from methylglyoxal-induced damage. A structure–activity relationship (SAR) analysis indicated that the absence of the double bond at C-2 and C-3, substitutions of the gallate group at the 3 position, the pyrogallol group at the B-ring, and the R configuration of the 3 position enhanced the protection of flavan-3-ols, and a hydroxyl substitution at the 4′ and meta-positions were important for the protection of flavonol. These SARs were further confirmed by molecular docking using the active site of the Keap1–Nrf2 complex as the receptor. The mechanistic study demonstrated that EGCG with the lowest EC50 protected the PC-12 cells from methylglyoxal-induced damage by reducing oxidative stress via the Nrf2/Keap1/HO-1 and Bcl-2/Bax signaling pathways. These results suggested that flavan-3-ols might be a potential dietary supplement for protection against diabetic encephalopathy.  相似文献   

5.
The main protease (Mpro) is a major protease having an important role in viral replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that caused the pandemic of 2020. Here, active Mpro was obtained as a 34.5 kDa protein by overexpression in E. coli BL21 (DE3). The optimal pH and temperature of Mpro were 7.5 and 37 °C, respectively. Mpro displayed a Km value of 16 μM with Dabcyl-KTSAVLQ↓SGFRKME-Edans. Black garlic extract and 49 polyphenols were studied for their inhibitory effects on purified Mpro. The IC50 values were 137 μg/mL for black garlic extract and 9–197 μM for 15 polyphenols. The mixtures of tannic acid with puerarin, daidzein, and/or myricetin enhanced the inhibitory effects on Mpro. The structure–activity relationship of these polyphenols revealed that the hydroxyl group in C3′, C4′, C5′ in the B-ring, C3 in the C-ring, C7 in A-ring, the double bond between C2 and C3 in the C-ring, and glycosylation at C8 in the A-ring contributed to inhibitory effects of flavonoids on Mpro.  相似文献   

6.
On the basis of the finding that various aminoalkyl-substituted chromene and chromane derivatives possess strong and highly selective in vitro bioactivity against Plasmodium falciparum, the pathogen responsible for tropical malaria, we performed a structure–activity relationship study for such compounds. With structures and activity data of 52 congeneric compounds from our recent studies, we performed a three-dimensional quantitative structure–activity relationship (3D-QSAR) study using the comparative molecular field analysis (CoMFA) approach as implemented in the Open3DQSAR software. The resulting model displayed excellent internal and good external predictive power as well as good robustness. Besides insights into the molecular interactions and structural features influencing the antiplasmodial activity, this model now provides the possibility to predict the activity of further untested compounds to guide our further synthetic efforts to develop even more potent antiplasmodial chromenes/chromanes.  相似文献   

7.
A novel melanoblast stimulator (1) was isolated from Dimocarpus longan. Its analogs were also synthesized to support a new furan-based melanoblast stimulator scaffold for treating vitiligo. Isolated 5-(hydroxymethyl)furfural (HMF, 1) is a well-known compound in the food industry. Surprisingly, the melanogenic activity of HMF (1) was discovered here for the first time. Both HMF and its synthetic analog (16) promote the differentiation and migration of melanoblasts in vitro. Typically, stimulator (1) upregulated MMP2 expression, which promoted the migration of melanoblasts in vitro.  相似文献   

8.
To search for efficient agricultural antifungal lead compounds, 39 Chimonanthus praecox derivatives were designed, synthesized, and evaluated for their antifungal activities. The structures of target compounds were fully characterized by 1H NMR, 13C NMR, and MS spectra. The preliminary bioassays revealed that some compounds exhibited excellent antifungal activities in vitro. For example, the minimum inhibitory concentration (MIC) of compound b15 against Phytophthora infestans was 1.95 µg mL−1, and the minimum inhibitory concentration (MIC) of compound b17 against Sclerotinia sclerotiorum was 1.95 µg mL−1. Therefore, compounds b15 and b17 were identified as the most promising candidates for further study.  相似文献   

9.
Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8–inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein–inhibitor BFE, different quantitative structure–activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.  相似文献   

10.
P2X3 receptors (P2X3R) are ATP-gated ion channels predominantly expressed in C- and Aδ-fiber primary afferent neurons and have been introduced as a novel therapeutic target for neurological disorders, including neuropathic pain and chronic cough. Because of its localized distribution, antagonism of P2X3R has been thoroughly considered, and the avoidance of issues related to CNS side effects has been proven in clinical trials. In this article, benzimidazole-4,7-dione-based derivatives were introduced as a new chemical entity for the development of P2X3R antagonists. Starting from the discovery of a hit compound from the screening of 8364 random library compounds in the Korea Chemical Bank, which had an IC50 value of 1030 nM, studies of structure–activity and structure–property relationships enabled further optimization toward improving the antagonistic activities as well as the drug’s physicochemical properties, including metabolic stability. As for the results, the final optimized compound 14h was developed with an IC50 value of 375 nM at P2X3R with more than 23-fold selectivity versus P2X2/3R, along with properties of metabolic stability and improved solubility. In neuropathic pain animal models evoked by either nerve ligation or chemotherapeutics in male Sprague-Dawley rats, compound 14h showed anti-nociceptive effects through an increase in the mechanical withdrawal threshold as measured by von Frey filament following intravenous administration.  相似文献   

11.
New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4–72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.  相似文献   

12.
Ongoing resistance developments against antibiotics that also affect last-resort antibiotics require novel antibacterial compounds. Strategies to discover such novel structures have been dimerization or hybridization of known antibacterial agents. We found novel antibacterial agents by dimerization of indols and hybridization with carbazoles. They were obtained in a simple one-pot reaction as bisindole tetrahydrocarbazoles. Further oxidation led to bisindole carbazoles with varied substitutions of both the indole and the carbazole scaffold. Both the tetrahydrocarbazoles and the carbazoles have been evaluated in various S. aureus strains, including MRSA strains. Those 5-cyano substituted derivatives showed best activities as determined by MIC values. The tetrahydrocarbazoles partly exceed the activity of the carbazole compounds and thus the activity of the used standard antibiotics. Thus, promising lead compounds could be identified for further studies.  相似文献   

13.
We used high-resolution rotational spectroscopy coupled to a laser ablation source to study the conformational panorama of perillartine, a solid synthetic sweetener. Four conformers were identified under the isolation conditions of the supersonic expansion, showing that all of them present an E configuration of the C=N group with respect to the double bond of the ring. The observed structures were verified against Shallenberger–Acree–Kier’s sweetness theory to shed light on the structure–sweetness relationship for this particular oxime, highlighting a deluge of possibilities to bind the receptor.  相似文献   

14.
Cancer is a serious problem in modern medicine, mainly due to the insufficient effectiveness of currently available therapies. There is a particular interest in compounds of natural origin, which can be used in the prophylaxis, as well as in the treatment and support of cancer treatment. One such compound is jasmonic acid (3-oxo-2-(pent-2’-enyl)cyclopentane acetic acid; isolated active form: trans-(-)-(3R,7R)- and cis-(+)-(3R,7S)-jasmonic acid) and its derivatives, which, due to their wide range of biological activities, are also proposed as potential therapeutic agents. Therefore, a review of literature data on the biological activity of jasmonates was prepared, with particular emphasis on the mechanisms of jasmonate action in neoplastic diseases. The anti-tumor activity of jasmonate compounds is based on altered cellular ATP levels; induction of re-differentiation through the action of Mitogen Activated Protein Kinases (MAPKs); the induction of the apoptosis by reactive oxygen species. Jasmonates can be used in anti-cancer therapy in combination with other known drugs, such as cisplatin, paclitaxel or doxorubicin, showing a synergistic effect. The structure–activity relationship of novel jasmonate derivatives with anti-tumor, anti-inflammatory and anti-aging effects is also shown.  相似文献   

15.
The excessive expression of reactive oxygen species is closely connected to many diseases. Considerable studies have demonstrated dandelion as well as its ingredients exhibited antioxidant activity. However, specific material basis reflecting the antioxidant activity has not been comprehensively investigated. In this study, a spectrum–effect relationship study on dandelion between fingerprinting and antioxidant activity was analyzed in detail, while a UHPLC quantification method developed and completely validated for simultaneous determination of active ingredients in dandelion. With the establishment of dandelion fingerprints of different regions, 24 common peaks were characterized. The classic FRAP method and ABTS methods were then used to detect their antioxidant activity. Partial least squares regression analysis, bivariate correlation analysis and grey correlation method were used to accomplish the spectrum–effect relationship. Eventually, the ingredients with antioxidant activity which could be considered as candidate quality markers of dandelion were discovered through spectrum–effect relationship analysis. The six compounds including caftaric acid, chlorogenic acid, caffeic acid, chicoric acid, isochlorogenic acid A, and isochlorogenic acid C were quantitatively determined. The developed UHPLC assay method was accurate, precise, and reliable. The study has elucidated the antioxidant material basis of dandelion and provided a scientific basis for the quality control of dandelion.  相似文献   

16.
《中国化学会会志》2018,65(5):567-577
Calpeptin analogs show anticancer properties with inhibition of calpain. In this work, we applied a quantitative structure–activity relationship (QSAR) model on 34 calpeptin derivatives to select the most appropriate compound. QSAR was employed to generate the models and predict the more significant compounds through a series of calpeptin derivatives. The HyperChem, Gaussian 09, and Dragon software programs were used for geometry optimization of the molecules. The 2D and 3D molecular structures were drawn by ChemDraw (Ultra 16.0) and Chem3D (Pro16.0) software. The Unscrambler program was used for the analysis of data. Multiple linear regression (MLR‐MLR), partial least‐squares (MLR‐PLS1), principal component regression (MLR‐PCR), a genetic algorithm‐artificial neural networks (GA‐ANN), and a novel similarity analysis‐artificial neural network (SA‐ANN) method were used to create QSAR models. Among the three MLR models, MLR‐MLR provided better statistical parameters. The R2 and RMSE of the prediction were estimated as 0.8248 and 0.26, respectively. Nevertheless, the constructed model using GA‐ANN revealed the best statistical parameters among the studied methods (R2 test = 0.9643, RMSE test = 0.0155, R2 train = 0.9644, RMSE train = 0.0139). The GA‐ANN model is found to be the most favorable method among the statistical methods and can be employed for designing new calpeptin analogs as potent calpain inhibitors in cancer treatment.  相似文献   

17.
Flavonoids are polyphenols with broad known pharmacological properties. A series of 2,3-dihydroflavanone derivatives were thus synthesized and investigated for their anti-inflammatory activities. The target flavanones were prepared through cyclization of 2′-hydroxychalcone derivatives, the later obtained by Claisen–Schmidt condensation. Since nitric oxide (NO) represents an important inflammatory mediator, the effects of various flavanones on the NO production in the LPS-induced RAW 264.7 macrophage were assessed in vitro using the Griess test. The most active compounds were flavanone (4G), 2′-carboxy-5,7-dimethoxy-flavanone (4F), 4′-bromo-5,7-dimethoxy-flavanone (4D), and 2′-carboxyflavanone (4J), with IC50 values of 0.603, 0.906, 1.030, and 1.830 µg/mL, respectively. In comparison, pinocembrin achieved an IC50 value of 203.60 µg/mL. Thus, the derivatives synthesized in this work had a higher NO inhibition capacity compared to pinocembrin, demonstrating the importance of pharmacomodulation to improve the biological potential of natural molecules. SARs suggested that the use of a carboxyl-group in the meta-position of the B-ring increases biological activity, whereas compounds carrying halogen substituents in the para-position were less active. The addition of methoxy-groups in the meta-position of the A-ring somewhat decreased the activity. This study successfully identified new bioactive flavanones as promising candidates for the development of new anti-inflammatory agents.  相似文献   

18.
Polyketide synthase 13 (Pks13), an essential enzyme for the survival of Mycobacterium tuberculosis (Mtb), is an attractive target for new anti-TB agents. In our previous work, we have identified 2-phenylindole derivatives against Mtb. The crystallography studies demonstrated that the two-position phenol was solvent-exposed in the Pks13-TE crystal structure and a crucial hydrogen bond was lost while introducing bulkier hydrophobic groups at indole N moieties. Thirty-six N-phenylindole derivatives were synthesized and evaluated for antitubercular activity using a structure-guided approach. The structure–activity relationship (SAR) studies resulted in the discovery of the potent Compounds 45 and 58 against Mtb H37Rv, with an MIC value of 0.0625 μg/mL and 0.125 μg/mL, respectively. The thermal stability analysis showed that they bind with high affinity to the Pks13-TE domain. Preliminary ADME evaluation showed that Compound 58 displayed modest human microsomal stability. This report further validates that targeting Pks13 is a valid strategy for the inhibition of Mtb and provides a novel scaffold for developing leading anti-TB compounds.  相似文献   

19.
Novel 4-amino-thieno[2,3-d]pyrimidine-6-carboxylates substituted at the second position were prepared by cyclocondensation of 2-amino-3-cyano-thiophene and aryl nitriles in an acidic medium. The design of the target compounds was based on structural optimization. The derivatives thus obtained were tested in vitro against human and mouse cell lines. The examination of the compound effects on BLAB 3T3 and MFC-10A cells showed that they are safe, making them suitable for subsequent experiments to establish their antitumor activity. The photoirritancy factor of the compounds was calculated. Using the MTT test, the antiproliferative activity to MCF-10A, MCF-7 and MDA-MB-231 cell lines was estimated. The best antiproliferative effect in respect to the MCF-7 cell line revealed compound 2 with IC50 4.3 ± 0.11 µg/mL (0.013 µM). The highest selective index with respect to MCF-7 cells was shown by compound 3 (SI = 19.3), and to MDA-MB-231 cells by compound 2 (SI = 3.7). Based on energy analysis, the most stable conformers were selected and optimized by means of density functional theory (DFT). Ligand efficiency, ligand lipophilicity efficiency and the physicochemical parameters of the target 4-amino-thienopyrimidines were determined. The data obtained indicated that the lead compound among the tested substances is compound 2.  相似文献   

20.
Cyclic peptides are one of the important chemical groups in the HDAC inhibitor family. Following the success of romidepsin in the clinic, naturally occurring cyclic peptides with a hydrophilic moiety have been intensively studied to test their function as HDAC inhibitors. Azumamides A-E, isolated from Mycale izuensis, are one of the powerful HDAC inhibitor classes. Structurally, azumamides A-E consist of three D-α-amino acids and unnatural β-amino acids such as 3-amino-2-methyl-5-nonenedioic acid-9-amide (Amnna) and 3-amino-2-methyl-5-nonenoic-1,9-diacid (Amnda). Moreover, azumamides have a retro-arrangement peptide backbone, unlike other naturally occurring cyclopeptide HDAC inhibitors, owing to the D-configuration of all residues. This review summarizes the currently available synthetic methods of azumamides A-E focusing on the synthesis of β-amino acids and macrocyclization. In addition, we overview the structure–activity relationship of azumamides A-E based on reported analogs. Collectively, this review highlights the potentiality of azumamides A-E as an HDAC inhibitor and provides further developmental insight into naturally occurring cyclic peptides in HDAC inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号