首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experiments were conducted in 54.9 mm diameter horizontal pipe on two sizes of glass beads of which mean diameter and geometric standard deviation are 440 μm & 1.2 and 125 μm & 1.15, respectively, and a mixture of the two sizes in equal fraction by mass. Flow velocity was up to 5 m/s and overall concentration up to 50% by volume for each velocity. Pressure drop and concentration profiles were measured. The profiles were obtained traversing isokinetic sampling probes in the horizontal, 45° inclined and vertical planes including the pipe axis. Slurry samples of the mixture collected in the vertical plane were analyzed for concentration profiles of each particle batch constituting the mixture. It was found that the pressure drop is decreased for the mixture at high concentrations except 5 m/s and a distinct change of concentration profiles was observed for 440 μm particles indicating a sliding bed regime, while the profiles in the horizontal plane remains almost constant irrespective of flow velocity, overall concentration and slurry type.  相似文献   

2.
The local flow characteristics of oil–water dispersed flow in a vertical upward pipe were studied experimentally. The inner diameter and length of the test section are 40 mm and 3800 mm, respectively. A double-sensor conductivity probe was used to measure the local interfacial parameters, including interfacial area concentration, oil phase fraction, interfacial velocity, and oil drops Sauter mean diameter. The water flow rates varied from 0.12 m/s to 0.89 m/s, while the oil flow rates ranged from 0.024 m/s to 0.198 m/s. Typical radial profiles of interfacial area concentration, oil phase fraction, interfacial velocity, and oil drops Sauter mean diameter are presented. An interesting phenomenon is that the local and cross-section-averaged interfacial area concentrations display concave change with water flow rate under constant oil flow rate. The physical mechanism of such a variation is discussed in details.  相似文献   

3.
The results of an experimental investigation on the flow field around submerged structures on horizontal plane beds, measured by an acoustic Doppler velocimeter (ADV), are presented. Experiments were conducted for various conditions of submergence, having submergence factors ranging from 1.0 to 2.0 and average flow velocity ranging from 0.25 to 0.51 m/s. The Froude number and the Reynolds number of the approaching flow for different runs are in the range of 0.18–0.42 and 50 000–76 500, respectively. The vertical distributions of time-averaged three dimensional velocity components and turbulence intensity components at different radial distances from the submerged structures are plotted. Deceleration and acceleration of the approaching flow around the submerged body are evident from the vertical distributions of the horizontal velocity component, whereas the lifting and diving nature of the flow are indicated by the vertical velocity component distributions. The vertical distributions of the horizontal velocity component indicate reduction of 30% of the non-dimensional time-averaged horizontal velocity component magnitude for the cylinder of diameter 11.5 cm in comparison to the cylinder of diameter 10 cm. Also, there is an increase of 10–25% in the horizontal velocity component at different radial sections. The flow is three dimensional in the downstream of the submerged structure. The velocity and the turbulent intensity components are also well predicted by FLUENT. The flow characteristics in the wake and the induced bed shear stress are also analyzed with FLUENT.The profiles of non-dimensional shear velocity deviate from the log law in the wake and the far downstream directions. The scour prone regions may be identified from the profiles of the induced bed shear stress around the submerged structure.  相似文献   

4.
This paper presents the results of an ongoing investigation into transient pressure pulses using Shannon entropy. Pressure fluctuations (produced by gas–solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle density 1950 kg/m3, loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 μm, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluctuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3–5 m/s) and very high velocities (i.e. 11–14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6–8 m/s).  相似文献   

5.
The estimation of the blockage boundary for pneumatic conveying through a slit is of significant importance. In this paper, we investigate the characteristics for blockage of powder (48 μm average diameter) through a horizontal slit (1.6 m × 0.05 m × 0.002 m). The results show that the required critical solid mass flow rate increases as the superficial air velocity increases superficial air velocity. The solid loading ratio and superficial air velocity displayed a decreasing power law relationship. This finding agrees with existing theory and experimental results. However, a minimum inlet solid loading ratio exists. When the air velocity is greater than the corresponding air velocity of the minimum solid loading ratio, the solid loading ratio exhibits an increasing trend in power law. We also found that when the inlet conveying pressure increased, the critical solid mass flow rate required for blockage, the inlet solid loading ratio, and the minimum inlet solid loading ratio increased.  相似文献   

6.
An accurate estimation of the total pressure drop of a pipeline is important to the reliable design of a pneumatic conveying system. The present paper presents results from an investigation into the modelling of the pressure drop at a bend in the pneumatic conveying of fly ash. Seven existing bend models were used (in conjunction with solids friction models for horizontal and vertical straight pipes, and initial acceleration losses) to predict the total pipeline pressure drop in conveying fly ash (median particle diameter: 30 μm; particle density: 2300 kg/m3; loose-poured bulk density: 700 kg/m3) in three test rigs (pipelines with dimensions of 69 mm inner diameter (I.D.) × 168 m length; 105 mm I.D. × 168 m length; 69 mm I.D. × 554 m length). A comparison of the pneumatic conveying characteristics (PCC) predicted using the seven bend models and experimental results shows that the predicted total pipeline PCC and trends depend on the choice of bend model. While some models predict trends that agree with the experimental results, other models predicted greater bend pressure drops for the dense phase of fly ash than for the dilute phase. Models of Pan, R. (1992). Improving scale-up procedures for the design of pneumatic conveying systems. Doctoral dissertation, University of Wollongong, Australia, Pan, R., & Wypych, P.W. (1998). Dilute and dense phase pneumatic conveying of fly ash. In Proceedings of the sixth International Conference on Bulk Materials Storage and Transportation (pp. 183–189), Wollongong, NSW, Australia and Chambers, A.J., & Marcus, R.D. (1986). Pneumatic conveying calculations. In Proceedings of the second International Conference on Bulk Materials Storage and Transportation (pp. 49–52), Wollongong, Australia reliably predicted the bend losses for systems conveying fly ash over a large range of air flows.  相似文献   

7.
In order to develop the interfacial area transport equation for the interfacial transfer terms in the two-fluid model, accurate data sets on axial development of local parameters such as void fraction, interfacial area concentration, interfacial gas velocity and Sauter mean diameter are indispensable to verify the modeled source and sink terms in the interfacial area transport equation. From this point of view, local measurements of both group 1 spherical/distorted bubbles and group 2 cap/slug bubbles in vertical upward air–water two-phase flow in a large diameter pipe with 200 mm in inner diameter and 26 m in height were performed at three axial locations of z/D = 41.5, 82.8 and 113 as well as 11 radial locations from r/R = 0–0.95 by using four-sensor probe method. Here, z, r, D and R are the axial distance from the inlet, radial distance from the pipe center, pipe diameter and pipe radius, respectively. The liquid flow rate and the void fraction ranged from 0.0505 m/s to 0.312 m/s and from 1.98% to 32.6%, respectively in the present experiment. The flow condition covered extensive region of bubbly flow, cap turbulent flow as well as their transition. The extensive analysis on the radial profiles of local flow parameters and their axial developments demonstrate the development of interfacial structures along the flow direction due to the bubble coalescence and breakup and the gas expansion. The significant decrease in void faction and interfacial area concentration and the increase in Sauter mean diameter and interfacial velocity were observed when the gradual flow regime transition occurred. Finally, the net change in the interfacial area concentration due to the bubble coalescence and breakup was quantitatively investigated in the present paper to reflect the true transfer mechanisms in observed two-phase flows.  相似文献   

8.
A new approach for simulating the formation of a froth layer in a slurry bubble column is proposed. Froth is considered a separate phase, comprised of a mixture of gas, liquid, and solid. The simulation was carried out using commercial flow simulation software (FIRE v2014) for particle sizes of 60–150 μm at solid concentrations of 0–40 vol%, and superficial gas velocities of 0.02–0.034 m/s in a slurry bubble column with a hydraulic diameter of 0.2 m and height of 1.2 m. Modelling calculations were conducted using a Eulerian–Eulerian multiphase approach with k–ε turbulence. The population balance equations for bubble breakup, bubble coalescence rate, and the interfacial exchange of mass and momentum were included in the computational fluid dynamics code by writing subroutines in Fortran to track the number density of different bubble sizes. Flow structure, radial gas holdup, and Sauter mean bubble diameter distributions at different column heights were predicted in the pulp zone, while froth volume fraction and density were predicted in the froth zone. The model was validated using available experimental data, and the predicted and experimental results showed reasonable agreement. To demonstrate the effect of increasing solid concentration on the coalescence rate, a solid-effect multiplier in the coalescence efficiency equation was used. The solid-effect multiplier decreased with increasing slurry concentration, causing an increase in bubble coalescence efficiency. A slight decrease in the coalescence efficiency was also observed owing to increasing particle size, which led to a decrease in Sauter mean bubble diameter. The froth volume fraction increased with solid concentration. These results provide an improved understanding of the dynamics of slurry bubble reactors in the presence of hydrophilic particles.  相似文献   

9.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids–gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30 μm; particle density 2300 kg/m3; loose-poured bulk density 700 kg/m3) and white powder (median particle diameter 55 μm; particle density 1600 kg/m3; loose-poured bulk density 620 kg/m3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s). This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctuation and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   

10.
The Large Eddy Simulation model was introduced to study the micro spray characteristics under ultra-high injection pressure (>220 MPa). EFS8400 spray test platform was set up to verify the accuracy of the numerical model. The mechanisms of micro spray characteristics were studied intensively under different injection pressures (180 MPa, 240 MPa) and nozzle diameters (0.1 mm, 0.16 mm). The results indicated that the micro turbulence vortex structures can be captured, especially in the liquid spray core area. Large Eddy Simulation model combined with the small grid size of 0.25 mm show a huge advantage in studying the micro spray characteristics under ultra-high injection pressure; The turbulence vorticity and spray velocity for injection pressure of 240 MPa are more intensive than that of 180 MPa, and also the ultra-high injection pressure can contribute to strong turbulence disturbance between spray and surrounding air, which is helpful to improve the quality of spray; The spray velocity field extended wider for the diameter of 0.16 mm, and also the values of velocity in the spray center is higher than that of the diameter of 0.1 mm; The entrainment vortex appeared at the edge of the large velocity gradient between spray and surrounding air, and the higher velocity gradient for ultra-high injection pressure (240 MPa) between the spray and air is easier to increase the generation of entrainment vortex in the downstream of the spray, which can significantly increase the quality of spray and atomization.  相似文献   

11.
Momentum transfer from shock waves (SWs) of various intensity (from 0.05 MPa to 0.5 MPa in amplitude) to water containing air bubbles 2.5 to 4 mm of mean diameter is studied both experimentally and by means of numerical simulation. Experiments are performed in a vertical shock tube of a 50 × 100 mm2 rectangular cross section consisting of a 495-mm long high-pressure section (HPS), 495-mm long low-pressure section (LPS), and 990 mm long test section (TS) equipped with an air bubbler and filled with water. Experiments have shown that as the initial gas volume fraction in water increases from 0 to 0.3 the momentum imparted in bubbly water by SWs increases monotonically, gradually levelling off at an air volume fraction of about 0.30. The experimental data are confirmed by two-dimensional (2D) simulation of SW propagation in bubbly water in terms of the SW velocity versus the air content, pressure profiles, as well as liquid and gas velocity behind the shock front.  相似文献   

12.
The design and safety analysis for miniature heat exchangers, the cooling system of high performance microelectronics, research nuclear reactors, fusion reactors and the cooling system of the spallation neutron source targets requires the knowledge of the gas–liquid two-phase flow in a narrow rectangular channel. In this study, flow measurements of vertical upward air–water flows in a narrow rectangular channel with the gap of 0.993 mm and the width of 40.0 mm were performed at seven axial locations by using the imaging processing technique. The local frictional pressure loss gradients were also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 0.214 m/s to 2.08 m/s and from 3.92% to 42.6%, respectively. The developing two-phase flow was characterized by the significant axial changes of the local flow parameters due to the bubble coalescence and breakup in the tested flow conditions. The existing two-phase frictional multiplier correlations such as Chisholm, 1967, Mishima et al., 1993 and Lee and Lee (2001) were verified to give a good prediction for the measured two-phase frictional multiplier. The predictions of the drift-flux model with the rectangular channel distribution parameter correlation of Ishii (1977) and several existing drift velocity correlations of Ishii, 1977, Hibiki and Ishii, 2003 and Jones and Zuber (1979) agreed well with the measured void fractions and gas velocities. The interfacial area concentration (IAC) model of Hibiki and Ishii (2002) was modified by taking the channel width as the system length scale and the modified IAC model could predict the IAC and Sauter mean diameter acceptably.  相似文献   

13.
In this study, a HMW anionic co-polymer of 40:60 wt/wt NaAMPS/acrylamide was used as a drag reducing polymer (DRP) for oil–water flow in a horizontal 25.4 mm ID acrylic pipe. The effect of polymer concentration in the master solution and after injection in the main water stream, oil and water velocities, and pipe length on drag reduction (DR) was investigated. The injected polymer had a noticeable effect on flow patterns and their transitions. Stratified and dual continuous flows extended to higher superficial oil velocities while annular flow changed to dual continuous flow. The results showed that as low as 2 ppm polymer concentration was sufficient to create a significant drag reduction across the pipe. DR was found to increase with polymer concentration increased and reached maximum plateau value at around 10 ppm. The results showed that the drag reduction effect tends to increase as superficial water velocity increased and eventually reached a plateau at Usw of around 1.3 m/s. At Usw > 1.0 m/s, the drag reduction decreased as Uso increased while at lower water velocities, drag reduction is fluctuating with respect to Uso. A maximum DR of about 60% was achieved at Uso = 0.14 m/s while only 45% was obtained at Uso = 0.52 m/s. The effectiveness of the DRP was found to be independent of the polymer concentration in the master solution and to some extent pipe length. The friction factor correlation proposed by Al-Sarkhi et al. (2011) for horizontal flow of oil–water using DRPs was found to underpredict the present experimental pressure gradient data.  相似文献   

14.
Experiments of air water two-phase flow pressure drop in vertical internally wavy 90° bend have been carried out. The tested bends are flexible and made of stainless steel with inner diameter of 50 mm and various curvature radiuses of 200, 300, 400 and 500 mm. The experiments were performed under the following conditions of two-phase parameters; mass flux from 350 to 750 kg/m2 s. Gas quality from 1% to 50% and system pressure from 4 to 7.5 bar. The results demonstrate that the effect of the above-mentioned parameters is very significant at high ranges of mass flow quality. Due to the increasing of two-phase flow resistance, energy dissipations, friction losses and interaction of the two-phases in the vertical internally wavy 90° bend the total pressure drops are perceptible about 2–5 times grater than that in smooth bends. Based on the mass and energy balance as well as the presented experimental results, new empirical correlation has been developed to calculate the two-phase pressure drop and hence the two-phase friction factor of the tested bends. The correlation includes the relevant primary parameter, fit the data well, and is sufficiency accurate for engineering purposes.  相似文献   

15.
Fine particles play a significant role in many industrial processes. To study the dynamic behavior of fine particle and their deposition in rock fractures, the pneumatic conveying of fine particles (approximately 100 μm in diameter) through a small-scale horizontal slit (0.41 m × 0.025 m) was studied, which is useful for the sealing technology of underground gas drainage in coal mining production. The CFD–DEM method was adopted to model the gas-particle two-phase flow; the gas phase was treated as a continuum and modeled using computational fluid dynamics (CFD), particle motion and collisions were simulated using the DEM code. Then, the bulk movement of fine particles through a small-scale horizontal slit was explored numerically, and the flow patterns were further investigated by visual inspection. The simulation results indicated that stratified flow or dune flow can be observed at low gas velocities. For intermediate gas velocities, the flow patterns showed pulsation phenomena, and dune flow reappeared in the tail section. Moreover, periodic flow regimes with alternating thick and sparse stream structures were observed at a high gas velocity. The simulation results of the bulk movement of fine particles were in good agreement with the experimental findings, which were obtained by video-imaging experiments. Furthermore, the calculated pressure drop versus gas velocity profile was investigated and compared with relative experimental findings, and the results showed good agreement. Furthermore, the particle velocity vectors and voidage distribution were numerically simulated. Selected stimulation results are presented and provide a reference for the further study of fine particles.  相似文献   

16.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   

17.
Experimental results for various water and air superficial velocities in developing adiabatic horizontal two-phase pipe flow are presented. Flow pattern maps derived from videos exhibit a new boundary line in intermittent regime. This transition from water dominant to water–gas coordinated regimes corresponds to a new transition criterion CT = 2, derived from a generalized representation with the dimensionless coordinates of Taitel and Dukler.Velocity, turbulent kinetic energy and dissipation rate, void fraction and bubble size radial profiles measured at 40 pipe diameters for JL = 4.42 m/s by hot film velocimetry and optical probes confirm this transition: the gas influence is not continuous but strongly increases beyond JG = 0.06 m/s. The maximum dissipation rate, derived from spectra, is increased in two-phase flow by a factor 5 with respect to the single phase case.The axial evolution of the bubble intercept length histograms also reveal the flow organization in horizontal layers, driven by buoyancy effects. Bubble coalescence is attested by a maximum bubble intercept evolving from 2.5 to 4.5 mm along the pipe. Turbulence generated by the bubbles is also manifest by the 4-fold increase of the maximum turbulent dissipation rate along the pipe.  相似文献   

18.
In this work, the continuity and momentum equations have been solved numerically to investigate the flow of power-law fluids over a rotating cylinder. In particular, consideration has been given to the prediction of drag and lift coefficients as functions of the pertinent governing dimensionless parameters, namely, power-law index (1  n  0.2), dimensionless rotational velocity (0  α  6) and the Reynolds number (0.1  Re  40). Over the range of Reynolds number, the flow is known to be steady. Detailed streamline and vorticity contours adjacent to the rotating cylinder and surface pressure profiles provide further insights into the nature of flow. Finally, the paper is concluded by comparing the present numerical results with the scant experimental data on velocity profiles in the vicinity of a rotating cylinder available in the literature. The correspondence is seen to be excellent for Newtonian and inelastic fluids.  相似文献   

19.
Experimental data from horizontal air–water slug flows were obtained in a test facility which was a 34 mm internal diameter, 10 m long Plexiglas pipe connected to the 90° branch arms from a T-junction. The test points were located on the flow pattern map in the proximity of the transition lines which separates different flow patterns. Capacitive probes with helical and concave plate sensors were used to quantify the dynamic liquid holdup in each branch. They were combined with Venturi nozzles + differential pressure transmitters in each outlet branch for measuring the two-phase mass flow rates. The dynamic characteristics of the slug flow splitting in a T-junction were studied from the acquired signals. Diaphragm straight-through type valves were used in the run and in the lateral branch arms to imitate equipments consuming the two-phase flow after the T-junction. This assembly can also be used as a gas–liquid separation system. The results showed different mechanisms acting on the slug flow division phenomenon. Liquid accumulation into the run branch, between the TJ and the control valve, caused more gas to come to the lateral branch.  相似文献   

20.
Magnetic resonance imaging (MRI) has been used to study the behaviour of jets at the distributor of a 50 mm diameter fluidised bed of 0.5 mm diameter poppy seeds. Two perforated-plate distributors were examined, containing either 10 or 14 holes, each 1 mm diameter. Ultra-fast MR imaging was able to show the transient nature of the upper parts of the jets, where discrete bubbles are formed. Imaging in 3D showed that the central jets were the longest for flow rates below minimum fluidisation. Above minimum fluidisation, the outer jets, nearest the wall of the fluidised bed, arched inward towards the central axis. In this latter case, interpretation of the time-averaged 3D image required the use of ultra-fast MR imaging to identify the approximate height above the distributor at which discrete bubbles were formed. The apparently continuous void extending along the central axis above this height in the time-averaged 3D image was thus identified, using ultra-fast MR imaging, as representing the averaged paths of released bubbles. Time-averaged MR velocity mapping was also used to identify dead zones of stationary particles resting on the distributor between the jets. The dead zones could be observed when the superficial velocity of the gas approached minimum fluidisation, but they were smaller than those observed at lower gas superficial velocity. Comparable images of a single jet through 1.2 mm diameter poppy seeds from MRI and electrical capacitance volume tomography (ECVT) are also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号