首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The removal properties of As(III) and As(V) by the several metal oxides having different mineral type and content of metals were investigated in batch and column reactors. The used metal oxides were Fe-oxide loaded sand (ILS), Mn-oxide loaded sand (MLS), activated alumina (AA), sericite (SC) and iron sand (IS). From the pH-edge adsorption experiments with AA and ILS, maximum As(III) adsorption was observed around neutral pH while As(V) adsorption was followed an anionic-type behavior. Among five metal oxides, AA showed the greatest removal capacity for both As(III) and As(V) through adsoption process but it has little oxidation capacity for As(III). Eventhough IS had much greater content of Fe-oxides than ILS, it showed a relatively lower removal capacity for both As(III) and As(V). This result suggests that adsorption of arsenic onto metal oxides is controlled by not only the contents of Fe-oxides but also mineral type of Fe-oxides. Column tests were performed at different combinations of metal oxides in a column reactor to find the best column system, which effectively treat both As(III) and As(V) at the same time. Among several combinations, the column reactors packed with MLS-AA and MLS-ILS showed a near complete oxidation of As(III) by MLS for a long time and the greatest adsorption of total arsenic compared to the column reactor packed with MLS-IS.  相似文献   

2.
Ferric nitrate–graphene (FG) nanocomposites synthesized via the equivalent‐volume impregnation method were used for the removal of As(V) species from simulated arsenic‐containing wastewater. Effects of various factors were assessed, such as the reaction temperature, solution pH, adsorbent dosage, and reaction time. The results indicated that the As(V) removal efficiency was as high as 99%, and the concentration of arsenic‐containing wastewater after FG treatment was as low as 9.4 μg L–1 as a result of the optimal absorption capacity and maximum specific surface area (171.766 m2/g) of this material. The equilibrium adsorption capacity of FG for As(V) was achieved in approximately 20 min, and the maximum adsorption capacity was calculated to be 112.4 mg g–1 by Langmuir adsorption isotherm, which was higher than that of other adsorbents such as manganese‐incorporated iron(III) oxide–graphene (14.42 mg g–1). Moreover, the removal efficiency of As(V) can be maintained above 95% under acidic and alkaline conditions. Brunauer–Emmett–Teller analysis showed that the modified FG pore structure was regular. Based on the characterizations by X‐ray diffraction, X‐ray photoelectron spectroscopy, and Fourier transform infrared, the products on the surface of the used FG were Fe(OH)3, FeAsO4, and other compounds, and As(V) was mainly removed by the formation of insoluble compounds and coprecipitation.  相似文献   

3.
Jitmanee K  Oshima M  Motomizu S 《Talanta》2005,66(3):529-533
A novel and simple flow-based method was developed for the simultaneous determination of As(III) and As(V) in freshwater samples. Two miniature columns with a solid phase anion exchange resin, placed on two 6-way valves were utilized for the solid-phase collection/concentration of arsenic(III) and arsenic(V), respectively. As(III) could be retained on the column after its oxidation to As(V) species with an oxidizing agent. The collected analytes were then sequentially eluted by 2 M nitric acid and introduced into ICP-AES. Potassium permanganate was examined as potential oxidizing agent for conversion of As(III) to As(V). The standard deviation of the analytical signals (peak height) for the replicate analysis (n = 5) of 0.5 μg l−1 solution were 3 and 5% for As(III) and As(V), respectively. The limit of detection (3σ) for both As(III) and As(V) were 0.1 μg l−1. The proposed system produced satisfactory results on the application to the direct analysis of inorganic arsenic species in freshwater samples.  相似文献   

4.
新型树脂基水合氧化铁对水体中微量砷的吸附性能研究   总被引:6,自引:0,他引:6  
将水合氧化铁固载于凝胶型强碱阴离子树脂N201上并合成出新型除砷吸附剂N201-Fe.研究了不同实验条件下N201-Fe对去除水溶液As(V)的影响.实验结果表明,N201-Fe对砷的吸附受pH值的影响较小;N201-Fe对As(V)具有很高选择性,在Cl-、HCO3-、SO42-等竞争离子共存时,N201对As(V)的去除率不到2%,而N201-Fe却高达90%.N201-Fe对As(V)的高选择性归因于N201-Fe中水合氧化铁与As(V)之间的络合配位能力及树脂表面的Donnan膜效应.静态吸附实验表明N201-Fe吸附As(V)的等温线符合Freundlich模型,热力学结果显示,该吸附过程为吸热过程.动态穿透实验表明,模拟水中的As(V)经N201-Fe处理后可达到中国和美国的饮用水标准,且N201-Fe的吸附处理量较N201提高30多倍.  相似文献   

5.
The alkylation of metalloids through the transfer of methyl groups is an important factor in the biogeochemical cycling of elements like arsenic and antimony. In the environment, many different organic and inorganic forms of these elements can therefore be found in soils, sediments or organisms. Studies that compare the ecotoxicity of these different chemical species however are rare. Therefore, this study aimed to generate toxicity data on two scarcely studied organic compounds of arsenic and antimony, as well as to compare their toxicity to the inorganic species, which are studied so far to a higher extent, in order to improve the environmental effect assessment of these elements. To this purpose, bioassays were performed in which three different aquatic organisms (the floating water plants Lemna minor and Wolffia arrhiza and the green alga Selenastrum capricornutum) were exposed to a concentration series of 3 different arsenic species (sodium arsenite — As(III), sodium arsenate — As(V), and monomethylarsonous diiodide — MMAs(III)) and three different antimony species (antimony potassium tartrate hydrate — Sb(III), potassium hexahydroxoantimonate — Sb(V), trimethylantimony(V) bromide — TMSb(V). The observed effect concentrations demonstrated that the inorganic (III)- and (V)-valent species of arsenic were clearly more toxic than the corresponding antimony species. The highest overall toxicity has been shown by MMAs(III) followed by the inorganic As(III). The highest toxicity of the three tested antimony species has been observed for TMSb(V). The observed differences in effect levels stress the importance once more that speciation must not be ignored in toxicity studies.  相似文献   

6.
A new method of hollow fiber liquid phase microextraction (HF-LPME) using ammonium pyrrolidine dithiocarbamate (APDC) as extractant combined with electrothermal atomic absorption spectrometry (ETAAS) using Pd as permanent modifier has been described for the speciation of As(III) and As(V). In a pH range of 3.0-4.0, the complex of As(III)-APDC complex can be extracted using toluene as the extraction solvent leaving As(V) in the aqueous layer. The post extraction organic phase was directly injected into ETAAS for the determination of As(III). To determine total arsenic in the samples, first As(V) was reduced to As(III) by l-cysteine, and then a microextraction method was performed prior to the determination of total arsenic. As(V) assay was based on subtracting As(III) form the total arsenic. All parameters, such as pH of solution, type of organic solvent, the amount of APDC, stirring rate and extraction time, affecting the separation of As(III) from As(V) and the extraction efficiency of As(III) were investigated, and the optimized extraction conditions were established. Under optimized conditions, a detection limit of 0.12 ng mL−1 with enrichment factor of 78 was achieved. The relative standard deviation (R.S.D.) of the method for five replicate determinations of 5 ng mL−1 As(III) was 8%. The developed method was applied to the speciation of As(III) and As(V) in fresh water and human hair extracts, and the recoveries for the spiked samples are 86-109%. In order to validate the developed method, three certified reference materials such as GBW07601 human hair, BW3209 and BW3210 environmental water were analyzed, and the results obtained were in good agreement with the certified values provided.  相似文献   

7.
Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were chemically modified with 3-aminopyrazole (MWCNTs-f) and applied as an efficient adsorbent to mercury and arsenic adsorption from aqueous solutions. The adsorbents were characterized by FT-IR, EDX, FE-SEM, TGA, and BET. The effects of pH, adsorbent dose, and initial ions concentration on the adsorption efficiency and the optimum conditions were investigated by central composite design. The optimum conditions were obtained at pH 7.6–7.9, adsorbent dose 20 mg, and initial ions concentration 20 ppm. So the maximum adsorption efficiencies in these conditions were 80.5 and 72.4% for the removal of Hg(II) and As(III) by MWCNTs-f, respectively. The quadratic model was used for the analysis of variance and indicated that adsorption of metal ions strongly depends on pH. Also, the pseudo-second-order model has been achieved from the adsorption kinetic studies. Furthermore, the experimental data were well fitted to the Langmuir isotherm and the maximum adsorption capacities obtained were 112 and 133 mg g?1 for the adsorption of Hg(II) and As(III) by MWCNTs-f, respectively. Moreover, a thermodynamic study revealed that the adsorption reactions were spontaneous and endothermic with the increase in randomness. In addition, a desorption study showed the favorable regeneration ability of MWCNTs-f even after three adsorption–desorption cycles. Therefore, the MWCNTs-f adsorbent has good potential for the removal of Hg(II) and As(III) pollutants from aqueous solutions.  相似文献   

8.
In order to understand the distribution and the cycle of arsenic compounds in the marine environment, the horizontal distributions of arsenic(V) [As(V)], arsenic(III) [As(III)], monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA) in the Indian Pacific Oceanic surface waters have been investigated. This took place during cruises of the boat Shirase from Tokyo to the Syowa Station (15 November–19 December 1990), of the tanker Japan Violet from Sakai to Fujayrah (28 July–17 August 1991) and of the boat Hakuho-maru from Tokyo to Auckland (19 September–27 October 1992). Vertical distributions of arsenic in the west Pacific Ocean have also been investigated. The concentration of As(V) was found to be relatively higher in the Antarctic than in the other areas. Its concentration varied from 340 ng dm?3 (China Sea) to 1045 ng dm?3 (Antarctic). On the other hand, the concentrations of the biologically produced species, MMAA and DMAA, were extremely low in the Antarctic and southwest Pacific waters. Their concentrations in Antarctic waters were 8 ng dm?3 and 22 ng dm?3 and those in the southwest Pacific were 12 ng dm?3 and 25 ng dm?3. In the other regions the concentration varied from 16 ng dm?3 (China Sea) to 36 ng dm?3 (north Indian Ocean) for MMAA and from 50 ng dm?3 (east Indian Ocean) to 172 ng dm?3 (north Indian Ocean) for DMAA. As a result, with the exception of Antarctic and southwest Pacific waters, the percentages of each arsenic species in the surface waters were very similar and varied from 52% (east Indian Ocean) to 63% (northwest Pacific Ocean) for As(V), from 22% (northwest Pacific Ocean) to 27% (east Indian Ocean) for As(III) and from 15% (northwest Pacific Ocean) to 21% (north and east Indian Oceans) for the methylated arsenics (MMAA+DMAA). These percentages in Antarctic waters were 97%, 0.2% and 2.8%, respectively, and those in the southwest Pacific Ocean were 97% for As(V)+As(III) and 3% for MMAA+DMAA. The very low concentrations of the biologically produced species in Antarctic waters and that of methylated arsenic in southwest Pacific waters indicated that the microorganism communities in these oceans was dominated by microorganisms having a low affinity towards arsenic. Furthermore, microorganism activity in the Antarctic was also limited due to the much lower temperature of the seawater there. The vertical profile of inorganic arsenic was 1350 ng dm?3 in surface waters, 1500 ng dm?3 in bottom waters with a maximum value of 1700 ng dm?3 at a depth of about 2000 m in west Pacific waters. This fact suggested the uptake of arsenic by microorganisms in the surface waters and the co-precipitation of arsenic with hydrated heavy-metal oxides in bottom waters. The suggested uptake of inorganic arsenic and subsequent methylation was also supported by the profile of DMAA, with a high concentration of about 26 ng dm?3 in surface water and a significant decrease to a value of 9 ng dm?3 at a depth of 1000 m.  相似文献   

9.
Coral limestones were treated with an aqueous solution of aluminium sulfate and thereby aluminium-loaded coral limestones (Al-CL) were prepared. By use of Al-CL as an adsorbent, the adsorption of inorganic arsenic compounds (arsenate [As(V)] and arsenite [As(III)] and of organic arsenic compounds (methylarsonic acid, dimethylarsinic acid, and arsenobetaine) was examined. The adsorption ability of Al-CL is superior to that of iron(III)-loaded coral limestone (Fe-CL) for As(V), As(III), methylarsonic acid and dimethylarsinic acid. The adsorption of As(V) and As(III) is almost independent of the initial pH over a wide range (2 or 3 to 11). The addition of other anions, such as chloride, nitrate, sulfate and acetate, in the solution does not affect the adsorption of As(V) and As(III), whereas the addition of phosphate greatly interferes with the adsorption. Arsenic adsorption is effectively applied to a column-type operation and the adsorption capability for As(V) is 150 μg/g coral limestone.  相似文献   

10.
Nowadays there is a great concern about new adsorbent materials for either the removal or fixation of arsenic species because of their high toxicity and the health problems associated with such species. In this paper the kinetics of absorption of As(V) on Fe(III)-loaded sponge have been studied and the results are compared with those of other natural and synthetic adsorbents. Arsenate was adsorbed very rapidly by Fe(III)-loaded sponge with saturation being reached in less than ten minutes. Arsenate was also adsorbed by Fe(III)-loaded Lewatit-TP-207 and non-loaded Purolite A100S ion-exchange resins but the times required to reach total saturation of the adsorbent were more than 100 minutes. The experimental data followed first-order kinetics. The extraordinarily superior kinetics are postulated to be related to the open-celled internal structure of the sponge material. The effect of flow rate on the dynamic removal of As(V) was studied in a fixed-bed column reactor for Fe(III)-loaded sponge and Fe(III)-loaded resin. The adsorption of As(V) on fixed-bed columns of adsorbent also indicated better kinetic properties for the sponge. Column studies showed a good correlation between the experimental data and the calculated breakthrough curves obtained by the Wolborska and Clark models. Application of the Wolborska model to the data at low C/C 0 ratios enabled the determination of the kinetic coefficient of mass transfer for the sponge and resin materials at the different flow rates used and gave a good prediction of the 5% breakthrough times. Furthermore, the breakthrough curves were well described by the Clark model at the ratios of concentration of effluent to influent up to 0.5 for the sponge and 0.3 for the Fe(III)-loaded resin. Above these levels, a large deviation occurred for the resin adsorption. Thus, the sponge was found to be kinetically effective and favored for As(V) adsorption from solution over the conventional adsorbents used and for most of the adsorbents reported in the bibliography.  相似文献   

11.
使用新型载铁(Ⅲ)-配位体交换棉纤维素吸附剂,通过静态和动态吸附实验,研究了饮用水中砷酸钠[砷(Ⅴ)]和氟化钠(氟)联合去除的效果和浓度因素的影响以及吸附剂经过反复吸附-洗脱再生-再吸附后性能的稳定性.结果表明,该吸附剂能够高效、高选择性地联合去除高砷(Ⅴ)和高氟.吸附柱的饱和吸附容量可高达15mg/g干重,反复使用中饱和体积的相对标准偏差小于0.5%,柱处理出水的各项有关指标均符合我国生活饮用水卫生标准,特别是砷(Ⅴ)的质量浓度低于0.010mg/L,符合世界健康组织(WHO)推荐的饮用水严格砷标准.说明该吸附剂在砷氟共存的地区具有很好的应用前景.  相似文献   

12.
In this study, the silylant agent 3-aminopropyl trimethoxysilane (APTES) was anchored on expanded glass aggregate (GA) to prepare a new adsorbent. N-Benzoyl-N′-(4-methylphenyl) thiourea (TTU) bonded to amino-functionalized GA adsorbent with reflux. Developed adsorbent (GA-APTES-TTU) was characterized using thermal analysis (TGA) and scanning electron microscopy (SEM). TGA and SEM studies indicated that modification of the glass aggregate (GA) surfaces was successfully performed. The adsorption studies exhibited that the GA-APTES-TTU could be efficiently used for the removal of Cr(III) from aqueous solutions. The effects of pH, adsorbent dosage, ion concentration, time, and temperature were investigated as adsorption parameters. The maximum removal of Cr(III) was observed at pH 4. The adsorption equilibrium was achieved in 120 min and adsorption of Cr(III) followed the Langmuir isotherm model. The maximum adsorption capacity for Cr(III) was 0.4305 mmol/g with GA-APTES-TTU. Thermodynamic parameters such as the standard free energy (ΔGo), enthalpy change (ΔH°) and entropy change (ΔS°) were calculated in order to explain the mechanism of adsorption process. The thermodynamic data showed that Cr(III) adsorption was spontaneous, endothermic, and a physisorption reaction. In addition, the adsorption kinetic data fitted to the pseudo-second order model.  相似文献   

13.
The batch removal of arsenic from aqueous solution using low-cost adsorbent (powdered eggshell) under the influences of initial arsenic ion concentrations (0.50 to 1.50 mg/L), pH (3.2 to 11.5) and particle size of eggshells (63 to 150 μm) were investigated. Eggshells were collected from Obafemi Awolowo University, Ile-Ife, washed with distilled water, air dried, ground into powder and sieved into different sieve sizes using British standard sieve. Powdered eggshells were stored in a desiccator for use. Adsorption isotherms and dynamics of arsenic onto PES were studied. The study revealed that there was a slight reduction in the rate of adsorption of arsenic ion onto the larger particle size, but adsorption capacity and parameters were unaffected. Powdered eggshell with particle size of 63 μm removed up to 99.6% of the 1.5 mg/L of arsenic ion in synthetic water within the first 6 hours but decreased to 98.4% and 97.4% when the powdered eggshell particle sizes were increased to 75 and 150 μm respectively. The pH optimum for arsenic removal was 7.2. The adsorption isotherms and adsorption dynamic kinetic studied through the use of graphical method revealed that Freundlich, activated sludge adsorption and pseudo second-order kinetic models correlate significantly with the experimental data with correlation coefficient of not less than 0.964.  相似文献   

14.
Bead cellulose loaded with iron oxyhydroxide (BCF) with 47 mass% Fe content was prepared and was successfully applied to the elimination of arsenic from aqueous solutions. A clearer understanding of the arsenic removal mechanism will provide accurate prediction of the arsenic adsorptive properties of the new adsorbent. To study the mechanism of the adsorption process, we measured the extended X-ray absorption fine structure (EXAFS) spectra of arsenite and arsenate sorbed onto the adsorbent with different surface coverages. Both arsenite and arsenate were strongly and specifically adsorbed by akaganéite adsorptive centers on BCF by an inner-sphere mechanism. There was no change in oxidation state following interaction between the arsenic species and the BCF surface. The dominant complex of arsenic species adsorbed on akaganéite was bidentate binuclear corner-sharing ((2)C) between As(V) tetrahedra (or As(III) pyramids) and adjacent edge-sharing FeO(6) octahedra. On the basis of the results from EXAFS spectra, the adsorptive characteristics of arsenic, such as the effects of pH and competing anions, were satisfactorily interpreted.  相似文献   

15.
A novel metal–organic framework material {[N(C2H5)3][Zn2(ptmda)22-H2O)]·(H2O)0.5}n { GUT-3 ; H2ptmda is 4,4′-([p-tolylazanediyl]bis [methylene])dibenzoic acid} was successfully synthesized using the hydrothermal method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. GUT-3 has a two-dimensional network based on dinuclear [Zn2(ptmda)2(μ2-H2O)] building units which formed an eightfold interpenetration network in GUT-3 molecules. Hirshfeld surface analysis revealed that H–H, C–H, and O–H bonds accounted for the majority of intermolecular interactions. Moreover, the interactions between GUT-3 and As(V) – the form of As(V) is AsO43− – were analyzed in aqueous solutions in a batch system to study the effect of pH, concentration, adsorbent dose, adsorption time, adsorption temperature, and shaking speed. The kinetic and isotherm data of arsenic adsorption on GUT-3 were accurately modeled by pseudo-second-order, Langmuir (qm = 33.91 mg/g), and Freundlich models. The Box–Behnken response surface method was used to optimize the adsorption conditions of As(V) from the simulated arsenic-contaminated wastewater. The effect of various experimental parameters and optimal experimental conditions was ascertained using the quadratic model.  相似文献   

16.
Speciation of organic and inorganic arsenic by HPLC-HG-ICP   总被引:2,自引:0,他引:2  
This paper deals with the application of high performance liquid chromatography (HPLC), hydride generation (HG) and inductively coupled plasma atomic emission spectrometry (ICP) to determine four species of arsenic: As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The coupling conditions of HPLC-HG-ICP are given. Two anionic exchange columns (Nucleosil-5SB and Hamilton PRP X-100) are tested and the separation conditions optimized. Two acids (H2SO4 and HCl at different concentrations) are tested to obtain the hydrides. The proposed method is applied to determine four arsenic species in a synthetic matrix simulating a fish extract.  相似文献   

17.
Flowerlike α-Fe(2)O(3) nanostructures were synthesized via a template-free microwave-assisted solvothermal method. All chemicals used were low-cost compounds and environmentally benign. These flowerlike α-Fe(2)O(3) nanostructures had high surface area and abundant hydroxyl on their surface. When tested as an adsorbent for arsenic and chromium removal, the flowerlike α-Fe(2)O(3) nanostructures showed excellent adsorption properties. The adsorption mechanism for As(V) and Cr(VI) onto flowerlike α-Fe(2)O(3) nanostructures was elucidated by X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption near edge structure analysis. The results suggested that ion exchange between surface hydroxyl groups and As(V) or Cr(VI) species was accounted for by the adsorption. With maximum capacities of 51 and 30 mg g(-1) for As(V) and Cr(VI), respectively, these low-cost flowerlike α-Fe(2)O(3) nanostructures are an attractive adsorbent for the removal of As(V) and Cr(VI) from water.  相似文献   

18.
Hydrazine (HZ) and sodium borohydride (BH) are commonly used reagents for the production of palladium nanoparticles (PdNP) in aqueous solution and also for the reduction of arsenic from higher oxidation state to lower oxidation state. A methodology based on the quantitative adsorption of reduced arsenic species on PdNP generated in situ by BH and HZ is described to characterize As (V) and As (III) in environmental water samples. It was observed that PdNP obtained by BH gave quantitative recovery of As (V) and (III) and the PdNP obtained by HZ could account for As (III). The reduced palladium particles are collected and dissolved in minimum amount of nitric acid. The quantification of arsenic was carried out using GFAAS. Optimization of the experimental conditions and instrumental parameters were investigated in detail. The proposed procedure was validated by applying it for the determination of the content of total As in Certified Reference Material BND 301-02 (NPL, India). The detection limit of arsenic in environmental water samples was 0.029 μg L−1 with an enrichment factor of 50. The relative standard deviation (R.S.D.) for 10 replicate measurements of 5 μg mL−1 was 4.2%. The proposed method was successfully applied for the determination of sub ppm to ppm levels of arsenic (V), (III) in environmental water samples.  相似文献   

19.
20.
Worldwide, arsenic contamination has become a matter of extreme importance owing to its potential toxic, carcinogenic and mutagenic impact on human health and the environment. The magnetite-loaded biochar has received increasing attention for the removal of arsenic (As) in contaminated water and soil. The present study reports a facile synthesis, characterization and adsorption characteristics of a novel magnetite impregnated nitrogen-doped hybrid biochar (N/Fe3O4@BC) for efficient arsenate, As(V) and arsenite, As(III) removal from aqueous environment. The as-synthesized material (N/Fe3O4@BC) characterization via XRD, BET, FTIR, SEM/EDS clearly revealed magnetite (Fe3O4) impregnation onto biochar matrix. Furthermore, the adsorbent (N/Fe3O4@BC) selectivity results showed that such a combination plays an important role in targeted molecule removal from aqueous environments and compensates for the reduced surface area. The maximum monolayer adsorption (Qmax) of developed adsorbent (N/Fe3O4@BC) (18.15 mg/g and 9.87 mg/g) was significantly higher than that of pristine biochar (BC) (9.89 & 8.12 mg/g) and magnetite nano-particles (MNPs) [7.38 & 8.56 mg/g] for both As(III) and As(V), respectively. Isotherm and kinetic data were well fitted by Langmuir (R2 = 0.993) and Pseudo first order model (R2 = 0.992) thereby indicating physico-chemical sorption as a rate-limiting step. The co-anions (PO43-) effect was more significant for both As(III) and As (V) removal owing to similar outer electronic structure. Mechanistic insights (pH and FTIR spectra) further demonstrated the remarkable contribution of surface groups (OH, –NH2 and –COOH), electrostatic attraction (via H- bonds), surface complexation and ion exchange followed by external mass transfer diffusion and As(III) oxidation into As(V) by (N/Fe3O4@BC) reactive oxygen species. Moreover, successful desorption was achieved at varying rates up to 7th regeneration cycle thereby showing (N/Fe3O4@BC) potential practical application. Thus, this work provides a novel insight for the fabrication of novel magnetic biochar for As removal from contaminated water in natural, engineering and environmental settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号