首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new method is proposed for ab initio calculations of nonstationary quantum processes on the basis of a probability representation of quantum mechanics with the help of a positive definite function (quantum tomogram). The essence of the method is that an ensemble of trajectories associated with the characteristics of the evolution equation for the quantum tomogram is considered in the space where the quantum tomogram is defined. The method is applied for detailed analysis of transient tunneling of a wave packet. The results are in good agreement with the exact numerical solution to the Schrödinger equation for this system. The probability density distributions are obtained in the coordinate and momentum spaces at consecutive instances. For transient tunneling of a wave packet, the probability of penetration behind the barrier and the time of tunneling are calculated as functions of the initial energy.  相似文献   

2.
We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision. The application of a spin-dependent light force on a superposition of spin states allows for coherent splitting of the matter wave packet such that two distinct components in phase space emerge. We observe such motion with a precision of better than 9% of the wave packet extension in both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions throughout the action of the displacement force. Our investigation shows corrections to simplified models of the system evolution. The precise knowledge of these dynamics may improve quantum gates for ion crystals and lead to entangled matter wave states with large displacements.  相似文献   

3.
We explore the quantum dynamical behavior of the Morse oscillator in the phase space using the Wigner function. For an initial wave packet excited with Gaussian probability distribution, we calculate the associated Wigner function and compute its time evolution. By calculating the marginal probabilities, we study the formation of quantum carpets both in the position space and in the momentum space. In addition, in view of these probabilities, we present the time evolution of the position and momentum expectation values. The structure of quantum carpets and the time-evolved expectation values mimic the emergence of quantum revivals and fractional revivals.  相似文献   

4.
We investigate the time for a particle to pass through the reflectionless Sech-squared potential. Using the Salecker-Wigner and Peres quantum clock an average transmission time of a Gaussian wave packet representing the particle is explicitly evaluated in terms of average momentum and travel distance. The average transmission time is shown to be shorter than the time of free-particle motion and very close to the classical time for wave packets with well-localized momentum states. Since the clock measures the duration of scattering process the average transmission time can be interpreted as the average dwell time.  相似文献   

5.
Even when the Higgs particle is finally detected, it will continue to be a legitimate question to ask whether the inertia of matter as a reaction force opposing acceleration is an intrinsic or extrinsic property of matter. General relativity specifies which geodesic path a free particle will follow, but geometrodynamics has no mechanism for generating a reaction force for deviation from geodesic motion. We discuss a different approach involving the electromagnetic zero‐point field (ZPF) of the quantum vacuum. It has been found that certain asymmetries arise in the ZPF as perceived from an accelerating reference frame. In such a frame the Poynting vector and momentum flux of the ZPF become non‐zero. Scattering of this quantum radiation by the quarks and electrons in matter can result in an acceleration‐dependent reaction force. Both the ordinary and the relativistic forms of Newton's second law, the equation of motion, can be derived from the electrodynamics of such ZPF‐particle interactions. Conjectural arguments are given why this interaction should take place in a resonance at the Compton frequency, and how this could simultaneously provide a physical basis for the de Broglie wavelength of a moving particle. This affords a suggestive perspective on a deep connection between electrodynamics, the origin of inertia and the quantum wave nature of matter.  相似文献   

6.
夏小建 《大学物理》2011,30(8):22-24,29
对经典一维受迫谐振子量子化,求解量子化后体系的时间演化算符.应用相空间准概率分布函数,研究了体系的量子特性.研究结果表明,初始为真空态,经过时间演化,系统波函数是一个二维高斯波包;波包中心的振幅和相位受到作用力的调制,成为调幅、调相波,波包中心的运动与经典受迫谐振子的运动形式相同.  相似文献   

7.
We address the question of which phase space functionals might represent a quantum state. We derive necessary and sufficient conditions for both pure and mixed phase space quantum states. From the pure state quantum condition we obtain a formula for the momentum correlations of arbitrary order and derive explicit expressions for the wave functions in terms of time-dependent and independent Wigner functions. We show that the pure state quantum condition is preserved by the Moyal (but not by the classical Liouville) time evolution and is consistent with a generic stargenvalue equation. As a by-product Baker's converse construction is generalized both to an arbitrary stargenvalue equation, associated to a generic phase space symbol, as well as to the time-dependent case. These results are properly extended to the mixed state quantum condition, which is proved to imply the Heisenberg uncertainty relations. Globally, this formalism yields the complete characterization of the kinematical structure of Wigner quantum mechanics. The previous results are then succinctly generalized for various quasi-distributions. Finally, the formalism is illustrated through the simple examples of the harmonic oscillator and the free Gaussian wave packet. As a by-product, we obtain in the former example an integral representation of the Hermite polynomials.  相似文献   

8.
A Gaussian wave packet confined to move on a plane perpendicular to a magnetic field remains a Gaussian wave packet in its time evolution. The average position and momentum follow the Ehrenfest equations which are identical to the classical Hamilton equations. A set of nonlinear equations decoupled from the Ehrenfest equation is derived for the parameters describing the time evolution of the density distribution and phases of a wave packet. Explicit solutions are then obtained when the "internal" angular momentum of the wave packet vanishes. In this case it is shown that the motion of the wave packet is a superposition of a translational motion, a rotation and a vibration.  相似文献   

9.
No Heading A hydrodynamic analogy for quantum mechanics is used to develop a phase-space representation in terms of a quasi-probability distribution function. Averages over phase space using this approach agree with the usual expectation values of quantum mechanics for a certain class of observables. We also derive the equations of motion that particles in an ensemble would have in phase space in order to mimic the time development of this probability distribution, thus giving the position and momentum of particles in the ensemble as a function of time. The equations of motion separate into position and momentum components. The position component reproduces the de Broglie-Bohm equation of motion. As a simple example, we calculate the phase space trajectories and entropy of a free particle wave packet.  相似文献   

10.
We propose and experimentally demonstrate a method to prepare a nonspreading atomic wave packet. Our technique relies on a spatially modulated absorption constantly chiseling away from an initially broad de Broglie wave. The resulting contraction is balanced by dispersion due to Heisenberg's uncertainty principle. This quantum evolution results in the formation of a nonspreading wave packet of Gaussian form with a spatially quadratic phase. Experimentally, we confirm these predictions by observing the evolution of the momentum distribution. Moreover, by employing interferometric techniques, we measure the predicted quadratic phase across the wave packet. Nonspreading wave packets of this kind also exist in two space dimensions and we can control their amplitude and phase using optical elements.  相似文献   

11.
利用量子力学的态叠加原理和算符劈裂法,对处于一维谐振子势中的初始态为高斯波包的中心位置的量子运动进行了研究.结果表明:其中心位置的量子运动呈现出经典谐振子的运动特性;波包的初始位置和初始时刻所加动量对波包中心位置量子动力学的影响与经典谐振子类似条件对运动的影响有相同的性质.本结果对理解复杂量子运动中的高斯波方法有一定的启示作用.  相似文献   

12.
We investigate the effect of radiation reaction on the motion of a wave packet of a charged scalar particle linearly accelerated in quantum electrodynamics (QED). We give the details of the calculations for the case where the particle is accelerated by a static potential that were outlined in Higuchi and Martin Phys. Rev. D 70 (2004) 081701(R) and present similar results in the case of a time-dependent but space-independent potential. In particular, we calculate the expectation value of the position of the charged particle after the acceleration, to first-order in the fine structure constant in the ℏ→ 0 limit, and find that the change in the expectation value of the position (the position shift) due to radiation reaction agrees exactly with the result obtained using the Lorentz-Dirac force in classical electrodynamics for both potentials.  相似文献   

13.
Using the Radon integral transform of the relativistic kinetic equation for a spin-zero particle, we obtain the classical and quantum evolution equations for the tomographic probability density (tomogram) describing the states of the particle in both the classical and quantum pictures. The Green functions (propagators) of the evolution equations of a free particle are constructed. The examples of the evolution of Gaussian tomogram is considered.  相似文献   

14.
Wensen Liu 《Annals of Physics》2004,312(2):480-491
A time-dependent closed-form formulation of the linear unitary transformation for harmonic-oscillator annihilation and creation operators is presented in the Schrödinger picture using the Lie algebraic approach. The time evolution of the quantum mechanical system described by a general time-dependent quadratic Hamiltonian is investigated by combining this formulation with the time evolution equation of the system. The analytic expressions of the evolution operator and propagator are found. The motion of a charged particle with variable mass in the time-dependent electric field is considered as an illustrative example of the formalism. The exact time evolution wave function starting from a Gaussian wave packet and the operator expectation values with respect to the complicated evolution wave function are obtained readily.  相似文献   

15.
A Gaussian type spin-polarized electronic wave packet is constructed to investigate the spin transport behaviour in an infinite two-dimensional electron gas system with Rashba spin--orbit (SO) interaction by solving the Schrödinger equation exactly. In the presence of Rashba SO interaction, the spin-dependent force induces a momentum dependent splitting of the two spin directions, the average spin current indicates the corresponding spin accumulation clearly. Furthermore, the coherence of the injected spin-polarized wave packet, as well as the transverse force, decays during the motion in the Rashba SO regime.  相似文献   

16.
一般波包在均匀场中的运动   总被引:1,自引:1,他引:0  
求出了一般波包的中心和宽度在一维均匀场中的变化规律,波包的中心遵循经典粒子的运动规律,宽度的平方则以时间的二次函数增长,但动量空间的相应波包却保持其宽度不变,特别是平面波在运动过程中仍保持为平面波,对Gauss波包,求出了波函数随时间变化的显式,验证了一般结论。  相似文献   

17.
The acceleration operators are derived for a spin-zero quantum particle near an observation point which is at rest in a static, spherically symmetric gravitational field. The expectation value of the acceleration of the center of gravity of an arbitrary wave packet is found.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 36–41, June, 1976.  相似文献   

18.
When a wave packet with a narrow momentum distribution is quantum reflected in a purely attractive potential proportional to -1/r(alpha), alpha>2, it generally experiences a time gain compared to a free particle reflected at r=0; for alpha=3 and very low energies there are large time delays. In quantum reflection of an atomic beam by a surface, such a time gain (delay) represents an apparent plane of reflection which is shifted in front of (behind) the surface. The quantum reflected wave is always delayed with respect to the classical particle accelerated in the attractive potential.  相似文献   

19.
Green's time functions are constructed for a neutral Pauli particle in nonuniform magnetic fields of special modes and, in the subsequent analysis, the motion of such a particle is regarded as an evolution (in time) of a Gaussian wave packet.  相似文献   

20.
A quantum analysis is presented of the motion and internal state of a two-level atom in a strong standing-wave light field. Coherent evolution of the atomic wave-packet, atomic dipole moment, and population inversion strongly depends on the ratio between the detuning from atom-field resonance and a characteristic atomic frequency. In the basis of dressed states, atomic motion is represented as wave-packet motion in two effective optical potentials. At exact resonance, coherent population trapping is observed when an atom with zero momentum is centered at a standing-wave node. When the detuning is comparable to the characteristic atomic frequency, the atom crossing a node may or may not undergo a transition between the potentials with probabilities that are similar in order of magnitude. In this detuning range, atomic wave packets proliferate at the nodes of the standing wave. This phenomenon is interpreted as a quantum manifestation of chaotic transport of classical atoms observed in earlier studies. For a certain detuning range, there exists an interval of initial momentum values such that the atom simultaneously oscillates in an optical potential well and moves as a ballistic particle. This behavior of a wave packet is a quantum analog of a classical random walk of an atom, when it enters and leaves optical potential wells in a seemingly irregular manner and freely moves both ways in a periodic standing light wave. In a far-detuned field, the transition probability between the potentials is low, and adiabatic wave-packet evolution corresponding to regular classical motion of an atom is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号