首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scaling exponent and the scaling function for the 1D single-species coagulation model (A+AA) are shown to be universal, i.e., they are not influenced by the value of the coagulation rate. They are independent of the initial conditions as well. Two different numerical methods are used to compute the scaling properties of the concentration: Monte Carlo simulations and extrapolations of exact finite-lattice data. These methods are tested in a case where analytical results are available. To obtain reliable results from finite-size extrapolations, numerical data for lattices up to ten sites are sufficient.  相似文献   

2.
Recently, Borgs and Kotecký developed a rigorous theory of finite-size effects near first-order phase transitions. Here we apply this theory to the ferromagneticq-state Potts model, which (forq large andd2) undergoes a first-order phase transition as the inverse temperature is varied. We prove a formula for the internal energy in a periodic cube of side lengthL which describes the rounding of the infinite-volume jumpE in terms of a hyperbolic tangent, and show that the position of the maximum of the specific heat is shifted by m (L)=(Inq/E)L –d +O(L –2d ) with respect to the infinite-volume transition point t . We also propose an alternative definition of the finite-volume transition temperature t (L) which might be useful for numerical calculations because it differs only by exponentially small corrections from t .  相似文献   

3.
The finite-size scaling technique is extended to a microcanonical ensemble. As an application, equilibrium magnetic properties of anL×L square lattice Ising model are computed using the microcanonical ensemble simulation technique of Creutz, and the results are analyzed using the microcanonical ensemble finite-size scaling. The computations were done on the multitransputer system of the Condensed Matter Theory Group at the University of Mainz.  相似文献   

4.
Finite-size scaling is studied for the three-state Potts model on a simple cubic lattice. We show that the specific heat and the magnetic susceptibility scale accurately as the volume. The correlation length exhibits behaviors expected for a genuine first-order transition; the one extracted from the unsubtracted correlation function shows a characteristic finite-size behavior, whereas the physical correlation length that characterizes the first excited state stays at a finite value and is discontinuous at the transition point.  相似文献   

5.
F.H. Jafarpour  B. Ghavami 《Physica A》2007,382(2):531-536
A one-dimensional reaction-diffusion model consisting of two species of particles and vacancies on a ring is introduced. The number of particles in one species is conserved while in the other species it can fluctuate because of creation and annihilation of particles. It has been shown that the model undergoes a continuous phase transition from a phase where the currents of different species of particles are equal to another phase in which they are different. The total density of particles and also their currents in each phase are calculated exactly.  相似文献   

6.
A new analytical technique based on integral transformations with Mittag-Leffler-type kernels is used to derive the finite-size scaling function for the free energy per particle of the mean spherical model with inverse power law asymptotics of the interaction potential. The asymptotic formation of the singularities in the specific heat and magnetic susceptibility at the bulk critical point is studied.  相似文献   

7.
8.
Various thermal equilibrium and nonequilibrium phase transitions exist where the correlation lengths in different lattice directions diverge with different exponentsv ,v : uniaxial Lifshitz points, the Kawasaki spin exchange model driven by an electric field, etc. An extension of finite-size scaling concepts to such anisotropic situations is proposed, including a discussion of (generalized) rectangular geometries, with linear dimensionL in the special direction and linear dimensionsL in all other directions. The related shape effects forL L but isotropic critical points are also discussed. Particular attention is paid to the case where the generalized hyperscaling relationv +(d–1)v =+2 does not hold. As a test of these ideas, a Monte Carlo simulation study for shape effects at isotropic critical point in the two-dimensional Ising model is presented, considering subsystems of a 1024x1024 square lattice at criticality.Visiting Supercomputer Senior Scientist at Rutgers University.  相似文献   

9.
Certain two-component reaction-diffusion systems on a finite interval are known to possess mesa (box-like) steady-state patterns in the singularly perturbed limit of small diffusivity for one of the two solution components. As the diffusivity D of the second component is decreased below some critical value Dc, with Dc=O(1), the existence of a steady-state mesa pattern is lost, triggering the onset of a mesa self-replication event that ultimately leads to the creation of additional mesas. The initiation of this phenomena is studied in detail for a particular scaling limit of the Brusselator model. Near the existence threshold Dc of a single steady-state mesa, it is shown that an internal layer forms in the centre of the mesa. The structure of the solution within this internal layer is shown to be governed by a certain core problem, comprised of a single nonautonomous second-order ODE. By analysing this core problem using rigorous and formal asymptotic methods, and by using the Singular Limit Eigenvalue Problem (SLEP) method to asymptotically calculate small eigenvalues, an analytical verification of the conditions of Nishiura and Ueyama [Y. Nishiura, D. Ueyama, A skeleton structure of self-replicating dynamics, Physica D 130 (1) (1999) 73-104], believed to be responsible for self-replication, is given. These conditions include: (1) The existence of a saddle-node threshold at which the steady-state mesa pattern disappears; (2) the dimple-shaped eigenfunction at the threshold, believed to be responsible for the initiation of the replication process; and (3) the stability of the mesa pattern above the existence threshold. Finally, we show that the core problem is universal in the sense that it pertains to a class of reaction-diffusion systems, including the Gierer-Meinhardt model with saturation, where mesa self-replication also occurs.  相似文献   

10.
We study the finite-size scaling behavior of two-point correlation functions of translationally invariant many-body systems at criticality. We propose an efficient method for calculating the two-point correlation functions in the thermodynamic limit from numerical data of finite systems. Our method is most effective when applied to a two-dimensional (classical) system which possesses a conformal invariance. By using this method with numerical data obtained from exact diagonalizations and Monte Carlo simulations, we study the spin-spin correlations of the quantum spin-1/2 and-3/2 antifierromagnetic chains. In particular, the logarithmic corrections to power-law decay of the correlation of the spin-1/2 isotropic Heisenberg antiferromagnetic chain are studied thoroughly. We clarify the cause of the discrepancy in previous calculations for the logarithmic corrections. Our result strongly supports the field-theoretic prediction based on the mappings to the Wess-Zumino-Witten nonlinear -model or the sine-Gordon model. We also treat logarithmic corrections and crossover phenomena in the spin-spin correlation of the spin-3/2 isotropic Heisenberg antiferromagnetic chain. Our results are consistent with the Affleck-Haldane prediction that the correlation of the spin-3/2 chain exhibits a crossover to the same asymptotic behavior as in the spin-1/2 chain.  相似文献   

11.
We investigate with the help of analytical and numerical methods the reactionA+AA on a one-dimensional lattice opened at one end and with an input of particles at the other end. We show that if the diffusion rates to the left and to the right are equal, for largex, the particle concentrationc(x) behaves likeA s x –1 (x measures the distance to the input end). If the diffusion rate in the direction pointing away from the source is larger than the one corresponding to the opposite direction, the particle concentration behaves likeA a x –1/2. The constantsA s andA a are independent of the input and the two coagulation rates. The universality ofA a comes as a surprise, since in the asymmetric case the system has a massive spectrum.  相似文献   

12.
We consider a two-dimensional Ising cylinder of circumferenceM and heightN, with a floating interface introduced by the appropriate boundary conditions. An exact analysis of the finite-size effects in surface tension is given and the scaling function for all temperatures is calculated. The results are compared with the Monte Carlo data of Mon and Jasnow.On leave from: Department of Theoretical Chemistry, Oxford University, Oxford, OX1 3UB, England.  相似文献   

13.
Time Evolution in Macroscopic Systems. I. Equations of Motion   总被引:1,自引:1,他引:0  
Time evolution of macroscopic systems is re-examined primarily through further analysis and extension of the equation of motion for the density matrix (t). Because contains both classical and quantum-mechanical probabilities it is necessary to account for changes in both in the presence of external influences, yet standard treatments tend to neglect the former. A model of time-dependent classical probabilities is presented to illustrate the required type of extension to the conventional time-evolution equation, and it is shown that such an extension is already contained in the definition of the density matrix.  相似文献   

14.
The standard two-dimensional uniformly driven diffusive model is simulated extensively for much larger systems with a multi-spin coding technique. The nonequilibrium phase transition is analyzed with anisotropic finite-size scaling both at the critical point and off the critical point. The field-theoretic values of critical exponents fit the data well at and aboveT c . BelowT c the scaling is rather difficult and the results are not conclusive.  相似文献   

15.
Nonequilibrium molecular dynamics simulations are used to demonstrate the asymptotic convergence of the transient and steady-state forms of the fluctuation theorem. In the case of planar Poiseuille flow, we find that the transient form, valid for all times, converges to the steady-state predictions on microscopic time scales. Further, we find that the time of convergence for the two theorems coincides with the time required for satisfaction of the asymptotic steady-state fluctuation theorem.  相似文献   

16.
We investigate the zero-temperature quantum phase transition of the randombond Ising chain in a transverse magnetic field. Its critical properties are identical to those of the McCoy-Wu model, which is a classical Ising model in two dimensions with layered disorder. The latter is studied via Monte Carlo simulations and transfer matrix calculations and the critical exponents are determined with a finite-size scaling analysis. The magnetization and susceptibility obey conventional rather than activated scaling. We observe that the order parameter and correlation function probability distribution show a nontrivial scaling near the critical point, which implies a hierarchy of critical exponents associated with the critical behavior of the generalized correlation lengths.  相似文献   

17.
The surface critical behavior of the two-dimensional Ising model with homogeneous perturbations in the surface interactions is studied on the one-dimensional quantum version. A transfer-matrix method leads to an eigenvalue equation for the excitation energies. The spectrum at the bulk critical point is obtained using anL –1 expansion, whereL is the length of the Ising chain. It exhibits the towerlike structure which is characteristic of conformal models in the case of irrelevant surface perturbations (h s /J s 0) as well as for the relevant perturbationh s =0 for which the surface is ordered at the bulk critical point leading to an extraordinary surface transition. The exponents are deduced from the gap amplitudes and confirmed by exact finite-size scaling calculations. Both cases are finally related through a duality transformation.  相似文献   

18.
It is well-known that 1D systems with only nearest neighbour interaction exhibit no phase transition. It is shown that the presence of a small long range interaction treated by the mean field approximation in addition to strong nearest neighbour interaction gives rise to hysteresis curves of large width. This situation is believed to exist in spin crossover systems where by the deformation of the spin changing molecules, an elastic coupling leads to a long range interaction, and strong bonding between the molecules in a chain compound leads to large values for nearest neighbour interaction constants. For this interaction scheme an analytical solution has been derived and the interplay between these two types of interaction is discussed on the basis of experimental data of the chain compound which exhibits a very large hysteresis of 50 K above RT at 370 K. The width and shape of the hysteresis loop depend on the balance between long and short range interaction. For short range interaction energies much larger than the transition temperature the hysteresis width is determined by the long range interaction alone. Received 26 November 1998  相似文献   

19.
In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model,the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method.In the simulation,noise reduction technique is used in order to eliminate the crossover effect.Our results show that due to the existence of the finite-size effect,the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L > 256.This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys.Rev.E 70 031607].In addition,our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.  相似文献   

20.
We consider a model in which positive and negative particles with equal densities diffuse in an asymmetric, CP-invariant way on a ring. The positive particles hop clockwise, the negative counterclockwise, and oppositely charged adjacent particles may swap positions. The model depends on two parameters. Analytic calculations using quadratic algebras, inhomogeneous solutions of the mean-field equations, and Monte Carlo simulations suggest that the model has three phases: (1) a pure phase in which one has three pinned blocks of only positive or negative particles and vacancies and in which translational invariance is broken; (2) a mixed phase in which the current has a linear dependence on one parameter, but is independent of the other one and of the density of the charged particles; in this phase one has a bump and a fluid, the bump (condensate) containing positive and negative particles only, the fluid containing charged particles and vacancies uniformly distributed; and (3) the mixed phase is separated from the disordered phase by a second-order phase transition which has many properties of the Bose–Einstein phase transition observed in equilibrium. Various critical exponents are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号