首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barrett's esophagus (BE) can experimentally be treated with 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT), in which ALA, the precursor of the endogenous photosensitizer protoporphyrin IX (PpIX) and subsequent irradiation with laser light are applied to destroy the (pre)malignant tissue. Accurate dosimetry is critical for successful ALA-PDT. Here, in vivo dosimetry and kinetics of PpIX fluorescence photobleaching were studied in a rat model of BE. The fluence and fluence rate were standardized in vivo and PpIX fluorescence was measured simultaneously at the esophageal wall during ALA-PDT and plotted against the delivered fluence rather than time. Rats with BE were administered 200 mg kg(-1) ALA (n = 17) or served as control (n = 4). Animals were irradiated with 633 nm laser light at a measured fluence rate of 75 mW cm(-2) and a fluence of 54 J cm(-2). Large differences were observed in the kinetics of PpIX fluorescence photobleaching in different animals. High PpIX fluorescence photobleaching rates corresponded with tissue ablation, whereas low rates corresponded with no damage to the epithelium. Attempts to influence tissue oxygenation by varying balloon pressure and ventilation were shown not to be directly responsible for the differences in effect. In conclusion, in vivo dosimetry is feasible in heterogeneous conditions such as BE, and PpIX fluorescence photobleaching is useful to predict the tissue response to ALA-PDT.  相似文献   

2.
The presence of phased protoporphyrin IX (PpIX) bleach kinetics has been shown to correlate with esophageal response to 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) in animal models. Here we confirm the existence of phased PpIX photobleaching by increasing the temporal resolution of the fluorescence measurements using the therapeutic illumination and long wavelength fluorescence detection. Furthermore fluorescence differential pathlength spectroscopy (FDPS) was incorporated to provide information on the effects of PpIX and tissue oxygenation distribution on the PpIX bleach kinetics during illumination. ALA at a dose of 200 mg kg(-1) was orally administered to 15 rats, five rats served as control animals. PDT was performed at an in situ measured fluence rate of 75 mW cm(-2) using a total fluence of 54 J cm(-2). Forty-eight hours after PDT the esophagus was excised and histologically examined for PDT-induced damage. Fluence rate and PpIX photobleaching at 705 nm were monitored during therapeutic illumination with the same isotropic probe. A new method, FDPS, was used for superficial measurement on saturation, blood volume, scattering characteristics and PpIX fluorescence. Results showed two-phased PpIX photobleaching that was not related to a (systematic) change in esophageal oxygenation but was associated with an increase in average blood volume. PpIX fluorescence photobleaching measured using FDPS, in which fluorescence signals are only acquired from the superficial layers of the esophagus, showed lower rates of photobleaching and no distinct phases. No clear correlation between two-phased photobleaching and histologic tissue response was found. This study demonstrates the feasibility of measuring fluence rate, PpIX fluorescence and FDPS during PDT in the esophagus. We conclude that the spatial distribution of PpIX significantly influences the kinetics of photobleaching and that there is a complex interrelationship between the distribution of PpIX and the supply of oxygen to the illuminated tissue volume.  相似文献   

3.
Abstract— The purpose of the present study was to determine the kinetics and the fluence rate dependency of the photo-bleaching of protoporphyrin IX (PpIX) in normal skin of Balb/c nude mice after systemic and topical application of 5-aminolevulinic acid (ALA). ALA was administered systemically (200 mg/kg body weight, i.p.) and topically (20% w/w ALA cream) to the mice. Fluences of up to 40 J/cm2 were delivered by a dye laser (636 nm) at fluence rates of 37.5, 75, 150, 300 and 500 mW/cm2. The photo-bleaching rate was constant within this range of fluence rates. This result suggests that there is no oxygen effect for PpIX photobleaching in this region for the skin of Balb/c nude mice. During light exposure the fluorescence decay followed neither first- nor second-order kinetics. The decay rate was slightly faster after systemic application than after topical application of ALA, but did not depend on the time (1–8 h) between application and analysis.  相似文献   

4.
The photobleaching of 5-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) was investigated during superficial photodynamic therapy (PDT) in normal skin of the SKH HRt hairless mouse. The effects of light dose and fluence rate on the dynamics and magnitude of photobleaching and on the corresponding PDT-induced dam-age were examined. The results show that the PDT damage cannot be predicted by the total light dose. Photo-bleaching was monitored over a wide range of initial PpIX fluorescence intensities. The rate of PpIX photo-bleaching is not a simple function of fluence rate but is dependent on the initial concentration of sensitizer. Also, at high fluence rates (50–150 mW/cm2, 514 nm) oxygen depletion is shown to have a significant effect. The rate of photobleaching with respect to light dose and the corresponding PDT damage both increase with decreasing fluence rate. We therefore suggest that the definition of a bleaching dose as the light dose that causes a 1/e reduction in fluorescence signal is insufficient to describe the dynamics of photobleaching and PDT-induced dam-age. We have detected the formation of PpIX photoproducts during the initial period of irradiation that were themselves subsequently photobleached. In the absence of oxygen, PpIX and its photoproducts are not photo-bleached. We present a method of calculating a therapeutic dose delivered during superficial PDT that demonstrates a strong correlation with PDT damage.  相似文献   

5.
Light fractionation with dark periods of the order of hours has been shown to considerably increase the efficacy of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT). Recent investigations have suggested that this increase may be due to the resynthesis of protoporphyrin IX (PpIX) during the dark period following the first illumination that is then utilized in the second light fraction. We have investigated the kinetics of PpIX fluorescence and PDT-induced damage during PDT in the normal skin of the SKH1 HR hairless mouse. A single illumination (514 nm), with light fluences of 5, 10 and 50 J cm-2 was performed 4 h after the application of 20% ALA, to determine the effect of PDT on the synthesis of PpIX. Results show that the kinetics of PpIX fluorescence after illumination are dependent on the fluence delivered; the resynthesis of PpIX is progressively inhibited following fluences above 10 J cm-2. In order to determine the influence of the PpIX fluorescence intensity at the time of the second illumination on the visual skin damage, 5 + 95 and 50 + 50 J cm-2 (when significantly less PpIX fluorescence is present before the second illumination), were delivered with a dark interval of 2 h between light fractions. Each scheme was compared to illumination with 100 J cm-2 in a single fraction delivered 4 or 6 h after the application of ALA. As we have shown previously greater skin damage results when an equal light fluence is delivered in two fractions. However, significantly more damage results when 5 J cm-2 is delivered in the first light fraction. Also, delivering 5 J cm-2 at 5 mW cm-2 + 95 J cm-2 at 50 mW cm-2 results in a reduction in visual skin damage from that obtained with 5 + 95 J cm-2 at 50 mW cm-2. A similar reduction in damage is observed if 5 + 45 J cm-2 are delivered at 50 mW cm-2. PpIX photoproducts are formed during illumination and subsequently photobleached. PpIX photoproducts do not dissipate in the 2 h dark interval between illuminations.  相似文献   

6.
Photobleaching kinetics of aminolevulinic acid-induced protoporphyrin IX (PpIX) were measured in the normal skin of rats in vivo using a technique in which fluorescence spectra were corrected for the effects of tissue optical properties in the emission spectral window through division by reflectance spectra acquired in the same geometry and wavelength interval and for changes in excitation wavelength optical properties using diffuse reflectance measured at the excitation wavelength. Loss of PpIX fluorescence was monitored during photodynamic therapy (PDT) performed using 514 nm irradiation. Bleaching in response to irradiances of 1, 5 and 100 mW cm-2 was evaluated. The results demonstrate an irradiance dependence to the rate of photobleaching vs irradiation fluence, with the lowest irradiance leading to the most efficient loss of fluorescence. The kinetics for the accumulation of the primary fluorescent photoproduct of PpIX also exhibit an irradiance dependence, with greater peak accumulation at higher irradiance. These findings are consistent with a predominantly oxygen-dependent photobleaching reaction mechanism in vivo, and they provide spectroscopic evidence that PDT delivered at low irradiance deposits greater photodynamic dose for a given irradiation fluence. We also observed an irradiance dependence to the appearance of a fluorescence emission peak near 620 nm, consistent with accumulation of uroporphyrin/coproporphyrin in response to mitochondrial damage.  相似文献   

7.
Photodynamic therapy (PDT) for actinic field cancerization is effective but painful. Pain mechanisms remain unclear but fluence rate has been shown to be a critical factor. Lower fluence rates also utilize available oxygen more efficiently. We investigated PDT effect in normal SKH1-HR mice using low and high fluence rate aminolevulinic acid (ALA) PDT and a fractionated illumination scheme. Six groups of six mice with different light treatment parameters were studied. Visual skin damage was assessed up to 7 days post-PDT. Fluorescence and reflectance spectroscopy during illuminations provided us with real-time information about protoporphyrin IX (PpIX) photobleaching. A novel dosing approach was introduced in that we used a photobleaching percentage instead of a preset fluence. Data show similar total and maximum damage scores in high and low fluence rate groups. Photobleaching of PpIX in the low fluence rate groups shows a trend toward more efficient photobleaching. Results indicate that low fluence rate PDT is as effective as and more efficient than high fluence rate PDT in normal mouse skin. Low fluence rate PDT light protocols need to be explored in human studies in search for an effective and well-tolerated treatment for actinic field cancerization.  相似文献   

8.
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illuminated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.  相似文献   

9.
An improved method to estimate dose to esophageal tissue was investigated in the setting of photodynamic therapy with aminolevulinic acid-induced protoporphyrin IX (PpIX) treatment. A model of treatment-induced edema in the esophagus mucosa proved to be a well controlled and useful way to test the dosimetry model, and the light from the treatment laser together with the PpIX fluorescence intensity could be quantified reliably in real time. Dosimetry calculations based upon the detected fluorescence and bleaching kinetics were used to calculate the "effective" dose to the tissue, and a correlation was shown to exist between this metric and the edema induced in the esophagus. The difference between animals with no detectable treatment effect and those with significant edema was predictable based upon the dose calculation. The underlying assumption in the interpretation of the data is that rapid photobleaching of PpIX occurs when there is ample oxygen supply, and this bleaching is not present when oxygen is limited. This leads to the prediction that integration of the light and drug dose, in intervals where appreciable photobleaching occurs, should provide a prediction of the relative dose of singlet oxygen produced. This detection system and rodent model can be used for prospective dosimetry studies that focus on optimization of esophageal PDT.  相似文献   

10.
Photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) may have a role in the treatment of dysplastic Barrett's esophagus. Before ALA-induced PDT can be used clinically, optimum treatment parameters must be established. In this study of 35 patients, the issues of drug dosage, time interval between drug and light delivery and side effects of oral ALA administration are addressed. Spectrofluorometric analysis of tissue samples demonstrates that oral ALA administration induces porphyrin accumulation in esophageal tissues, with maximum levels at 4-6 h. High-performance liquid chromatography confirms the identity of this porphyrin as PpIX, and fluorescence microscopy analysis demonstrates that it preferentially accumulates in the esophageal mucosa, rather than in the underlying stroma. Side effects of ALA administration included malaise, headache, photosensitivity, alopecia, transient derangement of liver function, nausea and vomiting. Fewer side effects and less hepatic toxicity was seen with 30 mg/kg than 50 mg/kg ALA. In conclusion, oral ALA administration induces preferential PpIX accumulation in the esophageal mucosa, with peak PpIX fluorescence noted at 4 h and minimal systemic toxicity at a dose of 30 mg/kg.  相似文献   

11.
Laser-induced fluorescence (LIF) investigations have been performed in connection with photodynamic therapy (PDT) of basal cell carcinomas and adjacent normal skin following topical application of 5-aminolaevulinic acid (ALA) in order to study the kinetics of the protoporphyrin IX (PpIX) build-up. Five superficial and 10 nodular lesions in 15 patients are included in the study. Fluorescence measurements are performed prior to the application of ALA, 2, 4 and 6 h post ALA application, immediately post PDT (60 J cm-2 at 635 nm), and 2 h after the treatment. Hence, the build-up, photobleaching and re-accumulation of PpIX can be followed. Superficial lesions show a maximum PpIX fluorescence 6 h post ALA application, whereas the intensity is already the highest 2-4 h after the application in nodular lesions. Immediately post PDT, the fluorescence contribution at 670 nm from the photoproducts is about 2% of the pre-PDT PpIX fluorescence at 635 nm. Two hours after the treatment, a uniform distribution of PpIX is found in the lesion and surrounding normal tissue. During the whole procedure, the autofluorescence of the lesions and the normal skin does not vary significantly from the values recorded before the application of ALA.  相似文献   

12.
A fractionated illumination scheme in which a cumulative fluence of 100 J cm(-2) is delivered in two equal light fractions separated by a dark interval of 2 h has been shown to considerably increase the efficacy of 5-aminolevulinic acid (ALA)-photodynamic therapy (PDT). The efficacy of such a scheme is further increased if the fluence of the first light fraction is reduced to 5 J cm(-2). We have investigated the relationship between the PDT response and the kinetics of protoporphyrin IX (PpIX) fluorescence in the SKH1 HR hairless mouse for first fraction fluences below 5 J cm(-2) delivered 4 h after the application of ALA and 10 J cm(-2) delivered 2 h after the application of ALA. Illumination is performed using 514 nm at a fluence rate of 50 mW cm(-2). Reducing the fluence of the first fraction to 2.5 J cm(-2) does not result in significantly different visual skin damage. The PDT response, however, is significantly reduced if the fluence is lowered to 1 J cm(-2), but this illumination scheme (1 + 99 J cm(-2)) remains significantly more effective than a single illumination of 100 J cm(-2). A first light fraction of 10 J cm(-2) can be delivered 2 h earlier, 2 h after the application of ALA, without significant reduction in the PDT response compared with 5 + 95 J cm(-2) delivered 4 and 6 h after the application of ALA. The kinetics of PpIX fluorescence are consistent with those reported previously by us and do not explain the significant increase in PDT response with a two-fold illumination scheme. Histological sections of the illuminated volume showed a trend toward increasing extent and depth of necrosis for the two-fold illumination scheme in which the first light fraction is 5 J cm(-2), compared with a single illumination scheme.  相似文献   

13.
Accumulation of protoporphyrin IX (PpIX) was investigated in normal skin and UV-induced tumours in hairless mice after topical application of a cream containing 2, 8 or 16% of 5-aminolevulinic acid methyl ester (ALA-Me). Higher levels of PpIX were measured in tumours compared to normal skin. The maximal amount of PpIX was reached at 1.5, 3 and 4 h after 2, 8 and 16% ALA-Me application, respectively. Higher tumour to normal skin PpIX fluorescence ratios were measured after application of 8 and 16% ALA-Me than after application of 2%. After irradiation with a broad spectrum of visible light from a slide projector, more than 90% of PpIX was bleached by fluences of 36 and 48 J/cm2, at fluence rates of 10 and 40 mW/cm2 respectively. At these fluences, the PpIX photobleaching rate was significantly higher (P<0.05) in normal mouse skin than in tumours. In addition, for a given fluence, more PpIX was photobleached at the lower fluence rate (10 mW/cm2) than at the higher fluence rate (40 mW/cm2) in normal skin (P<0.001) as well as in tumours (P<0.05) after exposure to 24 J/cm2 of light. In conclusion, the highest tumour to normal skin PpIX ratio was observed 3 h after application of 8% ALA-Me, suggesting that light exposure should be performed at this time in order to achieve an optimal PDT effect in this tumour model.  相似文献   

14.
A comparative study of the cellular photosensitizing properties of protoporphyrin IX (PpIX) and photoprotoporphyrin (Ppp) was carried out in the transformed murine keratinocyte cell line, PAM 212. Time-course fluorescence studies were performed to determine the rate of uptake by cells together with fluorescence microscopy. The sensitized cells were laser irradiated with a range of light doses at 635 or 670 nm to determine the phototoxicity of the two compounds and to investigate their relative fluorescence photobleaching properties. Ppp showed enhanced phototoxicity at both its optimal activation wavelength of 670 nm (eight times more phototoxic than PpIX activated at its optimal wavelength of 635 nm for the same fluence) and at 635 nm (three times more phototoxic than PpIX at the same wavelength), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The photobleaching rate of Ppp in cells was found to be higher using 670 nm irradiation compared with that of PpIX at 635 nm irradiation. At 635 nm, however, the photobleaching rate of Ppp was comparable to that of PpIX. The photobleaching quantum yields of the two compounds in cells were found to be similar at approximately 5 x 10(-4), with the same value confirmed at both 670 and 635 nm irradiation for Ppp. The fluorescence lifetime of Ppp in cells was measured as 5.4 ns using time-correlated single photon counting.  相似文献   

15.
Fluorescence photobleaching of protoporphyrin IX (PpIX) during superficial photodynamic therapy (PDT), using 514 nm excitation, was studied in UVB-induced tumor tissue in the SKH-HR1 hairless mouse. The effects of different irradiance and light fractionation regimes upon the kinetics of photobleaching and the PDT-induced damage were examined. Results show that the rate of PpIX photobleaching (i.e., fluorescence intensity vs fluence) and the PDT damage both increase with decreasing irradiance. We have also detected the formation of fluorescent PpIX photoproducts in the tumor during PDT, although the quantity recorded is not significantly greater than generated in normal mouse skin, using the same light regime. The subsequent photobleaching of the photoproducts also occurs at a rate (vs fluence) that increases with decreasing irradiance. In the case of light fractionation, the rate of photobleaching increases upon renewed exposure after the dark period, and there is a corresponding increase in PDT damage although this increase is smaller than that observed with decreasing irradiance. The effect of fractionation is greater in UVB-induced tumor tissue than in normal tissue and the damage is enhanced when fractionation occurs at earlier time points. We observed a variation in the distribution of PDT damage over the irradiated area of the tumor: at high irradiance a ring of damage was observed around the periphery. The distribution of PDT damage became more homogeneous with both lower irradiance and the use of light fractionation. The therapeutic dose delivered during PDT, calculated from an analysis of the fluorescence photobleaching rate, shows a strong correlation with the damage induced in normal skin, with and without fractionation. The same correlation could be made with the data obtained from UVB-induced tumor tissue using a single light exposure. However, there was no such correlation when fractionation schemes were employed upon the tumor tissue.  相似文献   

16.
Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid   总被引:7,自引:0,他引:7  
The response of human glioma spheroids to 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) is investigated. A two-photon fluorescence microscopy technique is used to show that human glioma cells readily convert ALA to protoporphyrin IX throughout the entire spheroid volume. The central finding of this study is that the response of human glioma spheroids to ALA-mediated PDT depends not only on the total fluence, but also on the rate at which the fluence is delivered. At low fluences (< or = 50 J cm-2), lower fluence rates are more effective. At a fluence of 50 J cm-2, near-total spheroid kill is observed at fluence rates of as low as 10 mW cm-2. The fluence rate effect is not as pronounced at higher fluences (> 50 J cm-2), where a favorable response is observed throughout the range of fluence rates investigated. The clinical implications of these findings are discussed.  相似文献   

17.
Photobleaching and phototransformation of protoporphyrin IX (PpIX) was investigated in normal mouse skin. The PpIX was induced by topical application of 5-aminolaevulinic acid (ALA). Exposure to laser light (635 nm) caused photobleaching of PpIX fluorescence and formation of fluorescent products. Analysis of the fluorescence spectra revealed appearance of new fluorescent photoproducts during light exposure. The main photoproduct, supposedly chlorin-type photoprotoporphyrin (PPp), exhibited fluorescence with an emission maximum at 675 nm. The other products exhibited main fluorescence peaks at around 588 and 623 nm that can presumably be attributed to an endogenous metallo-porphyrin and water-soluble porphyrin(s), respectively. Our results indicate that light exposure causes alterations in the enzymatic pathway of PpIX synthesis from ALA and leads to accumulation of intermediate water-soluble porphyrins. ALA-induced porphyrins are transported away from the treated area and partly deposited in remote skin sites.  相似文献   

18.
Photodynamic therapy (PDT) is a novel technique for local endoscopic treatment of gastrointestinal neoplasia. Current photosensitisers for PDT may cause prolonged skin phototoxicity. 5-Aminolaevulinic acid (ALA), a precursor of the photosensitiser protoporphyrin IX (PpIX), is more acceptable because of its short half-life and preferential accumulation in mucosa and mucosal tumour. We have treated 12 patients, median age 73 years (range 55-88) with oesophageal adenocarcinoma arising from Barrett's metaplasia (two carcinomas-in-situ, grade 0; 10 carcinomas, grade 1-11A based on endoluminal ultrasound in two and CT scanning in 10 patients). ALA (60 and 75 mg/kg body weight) was given orally in two or five equally divided doses. The PpIX distribution in stomach, normal oesophagus, Barrett's mucosa and carcinoma was measured by quantitative fluorescence photometry. PDT was performed using laser light (630 nm) delivered via a cylindrical diffuser 4-6 h after the first dose of ALA. The patients received one to four sessions of PDT. PpIX accumulation in the mucosa was two to three times that in the lamina propria. The differential distribution between carcinomatous and normal oesophageal mucosa was less marked (carcinoma:normal mucosa ratio = 1.4). Higher doses of ALA increased PpIX accumulation in all tissues but did not increase the differential PpIX distribution between tumour and normal oesophageal mucosa. After PDT using ALA (ALA/PDT), all mucosa showed superficial white necrotic changes and the histology confirmed fibrinoid necrosis. One patient with carcinoma-in-situ had the tumour eradicated after one treatment with no recurrence at 28 months. Another patient with a small T1 tumour required four ALA/PDT treatments, and died of other disease after 36 months. There was no evidence of recurrence. The tumour bulk in the other carcinomas was not significantly reduced. ALA/PDT has a potential for the eradication of small tumours but careful patient selection with endoluminal ultrasound is needed when using ALA/PDT to treat oesophageal cancer.  相似文献   

19.
Human adenocarcinoma cells of the line WiDr were incubated with 5-aminolevulinic acid to induce protoporphyrin IX (PpIX) and then exposed to laser light of wavelength 635 nm. The PpIX fluorescence decreased with increasing exposure. The decay rate was slightly dependent on the initial PpIX concentration. The PpIX fluorescence was halved by a fluence of about 40 J/cm2. Several fluorescing photoproducts were formed. The main one, supposedly the chlorine-type photoprotoporphyrin (Ppp), had a fluorescence excitation spectrum stretching out to about 680 nm with a maximum at around 668 nm. The formation kinetics of this product was dependent on the initial PpIX concentration. Moreover, it was selectively bleached by exposure to light at 670 nm. A photoproduct with an emission maximum at 652 nm, different from Ppp, remained after this exposure. Traces of a photoproduct(s) with fluorescence emission slightly blue-shifted compared with that of PpIX, supposedly water-soluble porphyrins, were also detected after light exposure.  相似文献   

20.
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号